Reviews of topical problems

Precise determination of crystal lattice parameters

Federal Scientific Research Center "Crystallography and Photonics", Russian Academy of Sciences, Shubnikov Institute of Crystallography, Russian Academy of Sciences, Leninskii prosp. 59, Moscow, 119333, Russian Federaion

Precision X-ray methods for absolute and relative determination of crystal lattice parameters (interplanar distances) are described and compared, including the X-ray divergent-beam (Kossel) technique, the Bond method, the Renninger method, the back reflection method, the interference method, and the method of standards. It is shown that for most of the considered methods, a relative accuracy of ~10−5—10−6 for determining the lattice parameters is usually achievable, with the last two methods giving a much greater accuracy, at the level of ~10−8—10−9.

Fulltext is available at IOP
Keywords: X-ray radiation, diffraction, Bragg angle, crystal lattice parameter, interplane distance
PACS: 06.20.Jr, 07.85.−m, 61.05.cp, 61.50.−f (all)
DOI: 10.3367/UFNe.2019.07.038599
Citation: Lider V V "Precise determination of crystal lattice parameters" Phys. Usp. 63 907–928 (2020)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 14th, May 2019, revised: 1st, July 2019, 2nd, July 2019

Оригинал: Лидер В В «Прецизионное определение параметров кристаллической решётки» УФН 190 971–994 (2020); DOI: 10.3367/UFNr.2019.07.038599

References (298) Similar articles (20) ↓

  1. V.V. Lider “X-ray holography58 365–383 (2015)
  2. V.V. Lider “Multilayer X-ray interference structures62 1063–1095 (2019)
  3. E.V. Suvorov, I.A. Smirnova “X-ray diffraction imaging of defects in topography (microscopy) studies58 833–849 (2015)
  4. F.F. Komarov “Nano- and microstructuring of solids by swift heavy ions60 435–471 (2017)
  5. A.V. Eletskii “Mechanical properties of carbon nanostructures and related materials50 225–261 (2007)
  6. V.I. Punegov “High-resolution X-ray diffraction in crystalline structures with quantum dots58 419–445 (2015)
  7. N.N. Kolachevsky “Laboratory search for time variation in the fine structure constant47 1101–1118 (2004)
  8. G.V. Fetisov “X-ray diffraction methods for structural diagnostics of materials: progress and achievements63 2–32 (2020)
  9. T.V. Tropin, Ju.W.P. Schmelzer, V.L. Aksenov “Modern aspects of the kinetic theory of glass transition59 42–66 (2016)
  10. G.N. Makarov “Laser applications in nanotechnology: nanofabrication using laser ablation and laser nanolithography56 643–682 (2013)
  11. M.M. Markina, P.S. Berdonosov et alFrancisites as new geometrically frustrated quasi-two-dimensional magnets64 344–356 (2021)
  12. S.G. Turyshev “Experimental tests of general relativity: recent progress and future directions52 1–27 (2009)
  13. A.V. Eletskii, A.A. Knizhnik et alElectrical characteristics of carbon nanotube doped composites58 209–251 (2015)
  14. V.B. Molodkin, A.P. Shpak et alMultiparametric crystallography using the diversity of multiple scattering patterns for Bragg and diffuse waves. Method of standing diffuse waves54 661–689 (2011)
  15. Yu.G. Poltavtsev “Structure of semiconductors in noncrystalline states19 969–987 (1976)
  16. R.I. Garber, A.I. Fedorenko “Focusing of atomic collisions in crystals7 479–507 (1965)
  17. Yu.S. Terminasov, L.V. Tuzov “Double reflections of X Rays in crystals7 434–456 (1964)
  18. A.N. Utyuzh, A.V. Mikheyenkov “Hydrogen and its compounds under extreme pressure60 886–901 (2017)
  19. G.N. Makarov “Kinetic methods for measuring the temperature of clusters and nanoparticles in molecular beams54 351–370 (2011)
  20. V.T. Dolgopolov “Integer quantum Hall effect and related phenomena57 105–127 (2014)

The list is formed automatically.

© 1918–2022 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions