Issues

 / 

2020

 / 

January

  

Reviews of topical problems


X-ray diffraction methods for structural diagnostics of materials: progress and achievements


Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory 1, str. 3, Moscow, 119991, Russian Federation

Development of X-ray diffractometry at the turn of the 20th and 21st centuries is presented. The review covers instrumentation development for structural studies based on the usage of both standard continuously radiating X-ray generators and state-of-the-art sources of ultrashort and ultra-bright X-ray pulses. The latter technique enables investigation of the structural dynamics of condensed matter in a 4D space-time continuum with a resolution of up to a tenth of femtosecond. New engineering approaches to enhancing sensitivity, accuracy, and efficiency of X-ray diffraction experiments are discussed including new and promising X-rays sources, reflective collimating and focusing X-ray optics, fast low-noise and radiation-resistant position-sensitive X-ray detectors, as well as a new generation of X-ray diffractometers developed based on these elements. Presentation is focused on modern engineering solutions that enable academic and applied-research laboratories to perform on-site the X-ray diffraction studies that earlier were only feasible using synchrotron radiation sources at international resource sharing centers.

Typically, an English fulltext is available in about 3 months from the date of publication of the original article.

Keywords: X-ray diffraction, synchrotron radiation, X-ray diffractometers, pulse X-ray sources, laser-plasma X-ray sources, alternative X-ray sources, X-ray free-electron lasers, reflective X-ray optics, multilayer thin-film X-ray reflectors, semiconductor position-sensitive X-ray detectors, two-dimensional hybrid pixel detectors
PACS: 07.85.−m, 42.55.Vc, 61.05.C− (all)
DOI: 10.3367/UFNe.2018.10.038435
URL: https://ufn.ru/en/articles/2020/1/b/
Citation: Fetisov G V "X-ray diffraction methods for structural diagnostics of materials: progress and achievements" Phys. Usp. 63 (1) (2020)

Received: 10th, August 2018, revised: 15th, September 2018, 4th, October 2018

Оригинал: Фетисов Г В «Рентгеновские дифракционные методы структурной диагностики материалов: прогресс и достижения» УФН 190 2–36 (2020); DOI: 10.3367/UFNr.2018.10.038435

© 1918–2020 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions