Выпуски

 / 

2020

 / 

Январь

  

Обзоры актуальных проблем


Рентгеновские дифракционные методы структурной диагностики материалов: прогресс и достижения


Московский государственный университет имени М. В. Ломоносова, химический факультет, Ленинские горы д. 1 стр. 3, Москва, 119991, Российская Федерация

Описано развитие рентгеновской дифрактометрии для структурных исследований с использованием как традиционных непрерывно излучающих генераторов рентгеновских лучей, так и новейших источников ультракоротких и ультраярких рентгеновских импульсов, позволяющих исследовать структурную динамику конденсированного вещества в 4D пространственно-временнóм континууме с разрешением вплоть до десятых долей фемтосекунды. Обсуждаются новые технические средства, повышающие чувствительность, точность и оперативность рентгеновских дифракционных экспериментов: новые и перспективные источники рентгеновских лучей, отражательная коллимирующая и фокусирующая рентгеновская оптика, быстрые малошумящие и радиационно-стойкие координатные рентгеновские детекторы, а также рентгеновские дифрактометры нового поколения, построенные на основе этих элементов. Наибольшее внимание уделяется современным техническим средствам, обеспечивающим проведение в университетских и производственных лабораториях рентгеновских дифракционных исследований материалов, которые ранее считались возможными только на синхротронном излучении в международных центрах коллективного пользования.

Текст pdf (1,3 Мб)
English fulltext is available at DOI: 10.3367/UFNe.2018.10.038435
Ключевые слова: рентгеновские дифракционные методы, рентгеноструктурный анализ, рентгеновские дифрактометры, импульсные источники рентгеновских лучей, лазерно-плазменные источники рентгеновских лучей, альтернативные источники рентгеновских лучей, рентгеновские лазеры на свободных электронах, отражательная рентгеновская оптика, многослойные тонкоплёночные рентгеновские отражатели, полупроводниковые позиционно-чувствительные рентгеновские детекторы, двумерные гибридные пиксельные детекторы
PACS: 07.85.−m, 42.55.Vc, 61.05.C− (все)
DOI: 10.3367/UFNr.2018.10.038435
URL: https://ufn.ru/ru/articles/2020/1/b/
000537855600002
2-s2.0-85085127893
2020PhyU...63....2F
Цитата: Фетисов Г В "Рентгеновские дифракционные методы структурной диагностики материалов: прогресс и достижения" УФН 190 2–36 (2020)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Поступила: 10 августа 2018, доработана: 15 сентября 2018, 4 октября 2018

English citation: Fetisov G V “X-ray diffraction methods for structural diagnostics of materials: progress and achievementsPhys. Usp. 63 2–32 (2020); DOI: 10.3367/UFNe.2018.10.038435

Список литературы (266) Статьи, ссылающиеся на эту (27) Похожие статьи (20) ↓

  1. С.Б. Дабагов «Каналирование нейтральных частиц в микро- и нанокапиллярах» УФН 173 1083–1106 (2003)
  2. С.В. Буланов, Т.Ж. Есиркепов и др. «Релятивистские зеркала в плазме — новые результаты и перспективы» УФН 183 449–486 (2013)
  3. В.С. Беляев, В.П. Крайнов и др. «Генерация быстрых заряженных частиц и сверхсильных магнитных полей при взаимодействии сверхкоротких интенсивных лазерных импульсов с твердотельными мишенями» УФН 178 823–847 (2008)
  4. А.В. Коржиманов, А.А. Гоносков и др. «Горизонты петаваттных лазерных комплексов» УФН 181 9–32 (2011)
  5. С.А. Асеев, А.С. Ахманов и др. «Структурная динамика свободных молекул и конденсированного вещества» УФН 190 113–136 (2020)
  6. В.В. Стрелков, В.Т. Платоненко и др. «Аттосекундные электромагнитные импульсы: генерация, измерение и применение. Генерация высоких гармоник интенсивного лазерного излучения для получения аттосекундных импульсов» УФН 186 449–470 (2016)
  7. В.В. Лидер «Многослойные рентгеновские интерференционные структуры» УФН 189 1137–1171 (2019)
  8. Н.А. Винокуров, Е.Б. Левичев «Ондуляторы и вигглеры для генерации излучения и других применений» УФН 185 917–939 (2015)
  9. Б.М. Карнаков, В.Д. Мур и др. «Современное развитие теории нелинейной ионизации атомов и ионов» УФН 185 3–34 (2015)
  10. В.П. Крайнов, Б.М. Смирнов, М.Б. Смирнов «Фемтосекундное возбуждение кластерных пучков» УФН 177 953–981 (2007)
  11. Э.В. Суворов, И.А. Смирнова «Дифракционное изображение дефектов в рентгеновской топографии (рентгеновской микроскопии)» УФН 185 897–915 (2015)
  12. С.В. Буланов, Я.Я. Вилкенс и др. «Лазерное ускорение ионов для адронной терапии» УФН 184 1265–1298 (2014)
  13. И.Н. Косарев «Кинетическая теория плазмы и газа. Взаимодействие мощных лазерных импульсов с плазмой» УФН 176 1267–1281 (2006)
  14. А.А. Ищенко, С.А. Асеев и др. «Сверхбыстрая электронная дифракция и электронная микроскопия: современное состояние и перспективы» УФН 184 681–722 (2014)
  15. В.И. Пунегов «Высокоразрешающая рентгеновская дифракция в кристаллических структурах с квантовыми точками» УФН 185 449–478 (2015)
  16. Б.К. Вайнштейн «Электронная микроскопия атомного разрешения» УФН 152 75–122 (1987)
  17. П.Д. Гаспарян, Ф.А. Стариков, А.Н. Старостин «Проблема угловой расходимости и пространственной когерентности излучения рентгеновского лазера» УФН 168 843–876 (1998)
  18. Р.А. Ганеев «Современные тенденции в области генерации высших гармоник при лазерной абляции различных поверхностей» УФН 183 815–847 (2013)
  19. В.В. Лидер «Прецизионное определение параметров кристаллической решётки» УФН 190 971–994 (2020)
  20. Б.М. Смирнов «Генерация кластерных пучков» УФН 173 609–648 (2003)

Список формируется автоматически.

© Успехи физических наук, 1918–2024
Электронная почта: ufn@ufn.ru Телефоны и адреса редакции О журнале Пользовательское соглашение