Issues

 / 

2021

 / 

May

  

Instruments and methods of investigation


Soft X-ray spectrometers based on aperiodic reflection gratings and their application

, , , ,
Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation

This paper is concerned with the history, properties, development, application, and prospects of soft X-ray (2—300 Å) VLS spectrometers, i.e., spectrometers with reflection diffraction gratings whose spacing varies monotonically across the aperture according to a prescribed law (so-called Varied Line-Space (VLS) gratings). An important feature of grazing-incidence VLS spectrometers is that the spectrum is formed on a nearly flat surface perpendicular (or slightly inclined) to the diffracted beams, making them perfectly compatible with modern CCD detectors. VLS spectrometers are employed for the spectroscopy of laboratory and astrophysical plasmas, including the diagnostics of relativistic laser-produced plasmas, for measuring the linewidth of an X-ray laser, for recording the high-order harmonics of laser radiation, and the registering the emission of fast electric discharges and other laboratory X-ray sources. Instruments with VLS gratings are employed to advantage in reflectometry/metrology, X-ray fluorescence analysis, and microscopy with the use of synchrotron, free-electron laser, and laser-produced plasma radiation, as well as in SXR emission spectroscopy, combined with an electron microscope (SXES). Recent years have seen the active development of VLS spectrometers dedicated to the investigation of the electronic structure of different materials and molecules by resonant inelastic X-ray scattering (RIXS) spectroscopy with synchrotron radiation. Among recent trends is the development of VLS gratings with a multilayer reflective coating and extension of the operating spectral range towards 'tender' X-rays ($\hbar \omega \sim& 1.5—6 keV), some projects aiming to achieve a resolving power $\lambda /\delta \lambda \sim 10^5$ in the region $\hbar \omega \sim 1$ keV.

Fulltext pdf (2.9 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2020.06.038799
Keywords: soft X-ray radiation, aperiodic reflection diffraction grating (VLS grating), flat-field spectrometer, scanning spectrometer/monochromator, stigmatic (imaging) spectrometer
PACS: 07.60.−j, 07.85.−m, 07.85.Fv, 07.85.Nc, 07.87.+v, 42.79.−e (all)
DOI: 10.3367/UFNe.2020.06.038799
URL: https://ufn.ru/en/articles/2021/5/d/
000691278700004
2-s2.0-85112829433
2021PhyU...64..495R
Citation: Ragozin E N, Vishnyakov E A, Kolesnikov A O, Pirozhkov A S, Shatokhin A N "Soft X-ray spectrometers based on aperiodic reflection gratings and their application" Phys. Usp. 64 495–514 (2021)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 25th, April 2020, revised: 27th, June 2020, 29th, June 2020

Оригинал: Рагозин Е Н, Вишняков Е А, Колесников А О, Пирожков А С, Шатохин А Н «Спектрометры для мягкого рентгеновского диапазона на основе апериодических отражательных решёток и их применение» УФН 191 522–542 (2021); DOI: 10.3367/UFNr.2020.06.038799

References (76) Cited by (14) Similar articles (20) ↓

  1. A.S. Pirozhkov, E.N. Ragozin “Aperiodic multilayer structures in soft X-ray opticsPhys. Usp. 58 1095–1105 (2015)
  2. V.V. Lider “X-ray fluorescence imagingPhys. Usp. 61 980–999 (2018)
  3. P. Mazarov, V.G. Dudnikov, A.B. Tolstoguzov “Electrohydrodynamic emitters of ion beamsPhys. Usp. 63 1219–1255 (2020)
  4. A.E. Ieshkin, A.B. Tolstoguzov et alGas-dynamic sources of cluster ions for basic and applied researchPhys. Usp. 65 677–705 (2022)
  5. V.V. Lider “X-ray crystal interferometersPhys. Usp. 57 1099–1117 (2014)
  6. A.I. Protsenko, I.A. Eliovich et alInvestigation of the dynamics of the Belousov—Zhabotinsky reaction by time-resolved X-ray absorption spectroscopy using adaptive X-ray optical elementsPhys. Usp. 66 1258–1261 (2023)
  7. P.V. Zinin, K.M. Bulatov et alRemote measurement of the temperature distribution on the surface of solids under high-power laser irradiationPhys. Usp. 65 852–863 (2022)
  8. M.A. Proskurnin, V.R. Khabibullin et alPhotothermal and optoacoustic spectroscopy: state of the art and prospectsPhys. Usp. 65 270–312 (2022)
  9. V.V. Lider “Talbot and Talbot—Lau X-ray interferometersPhys. Usp. 66 987–1007 (2023)
  10. V.M. Petrov, P.M. Agruzov et alBroadband integrated optical modulators: achievements and prospectsPhys. Usp. 64 722–739 (2021)
  11. I.Yu. Eremchev, D.V. Prokopova et alThree-dimensional fluorescence nanoscopy of single quantum emitters based on the optics of spiral light beamsPhys. Usp. 65 617–626 (2022)
  12. D.A. Zolotov, V.E. Asadchikov et alNew approaches to three-dimensional dislocation reconstruction in silicon from X-ray topo-tomography dataPhys. Usp. 66 943–950 (2023)
  13. V.V. Lider “X-ray refraction introscopyPhys. Usp. 67 325–337 (2024)
  14. A.S. Bugaev, P.A. Eroshkin et alLow-power X-ray tubes: the current statusPhys. Usp. 56 691–703 (2013)
  15. M.I. Lomaev, V.S. Skakun et alExcilamps: efficient sources of spontaneous UV and VUV radiationPhys. Usp. 46 193–209 (2003)
  16. V.A. Belyakov, V.E. Dmitrienko “Polarization phenomena in x-ray opticsSov. Phys. Usp. 32 697–719 (1989)
  17. I.D. Novikov, S.F. Likhachev et alObjectives of the Millimetron Space Observatory science program and technical capabilities of its realizationPhys. Usp. 64 386–419 (2021)
  18. V.Yu. Khomich, V.A. Shmakov “Large-sized mirrors for power opticsPhys. Usp. 62 249–256 (2019)
  19. D.V. Kazantsev, E.A. Kazantseva “Scattering-type apertureless scanning near-field optical microscopyPhys. Usp. 67 588–628 (2024)
  20. M.M. Barysheva, A.E. Pestov et alPrecision imaging multilayer optics for soft X-rays and extreme ultraviolet bandsPhys. Usp. 55 681–699 (2012)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions