Issues

 / 

2021

 / 

May

  

Instruments and methods of investigation


Soft X-ray spectrometers based on aperiodic reflection gratings and their application

, , , ,
Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation

This paper is concerned with the history, properties, development, application, and prospects of soft X-ray (2—300 Å) VLS spectrometers, i.e., spectrometers with reflection diffraction gratings whose spacing varies monotonically across the aperture according to a prescribed law (so-called Varied Line-Space (VLS) gratings). An important feature of grazing-incidence VLS spectrometers is that the spectrum is formed on a nearly flat surface perpendicular (or slightly inclined) to the diffracted beams, making them perfectly compatible with modern CCD detectors. VLS spectrometers are employed for the spectroscopy of laboratory and astrophysical plasmas, including the diagnostics of relativistic laser-produced plasmas, for measuring the linewidth of an X-ray laser, for recording the high-order harmonics of laser radiation, and the registering the emission of fast electric discharges and other laboratory X-ray sources. Instruments with VLS gratings are employed to advantage in reflectometry/metrology, X-ray fluorescence analysis, and microscopy with the use of synchrotron, free-electron laser, and laser-produced plasma radiation, as well as in SXR emission spectroscopy, combined with an electron microscope (SXES). Recent years have seen the active development of VLS spectrometers dedicated to the investigation of the electronic structure of different materials and molecules by resonant inelastic X-ray scattering (RIXS) spectroscopy with synchrotron radiation. Among recent trends is the development of VLS gratings with a multilayer reflective coating and extension of the operating spectral range towards 'tender' X-rays ($\hbar \omega \sim& 1.5—6 keV), some projects aiming to achieve a resolving power $\lambda /\delta \lambda \sim 10^5$ in the region $\hbar \omega \sim 1$ keV.

Fulltext pdf (2.9 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2020.06.038799
Keywords: soft X-ray radiation, aperiodic reflection diffraction grating (VLS grating), flat-field spectrometer, scanning spectrometer/monochromator, stigmatic (imaging) spectrometer
PACS: 07.60.−j, 07.85.−m, 07.85.Fv, 07.85.Nc, 07.87.+v, 42.79.−e (all)
DOI: 10.3367/UFNe.2020.06.038799
URL: https://ufn.ru/en/articles/2021/5/d/
000691278700004
2-s2.0-85112829433
2021PhyU...64..495R
Citation: Ragozin E N, Vishnyakov E A, Kolesnikov A O, Pirozhkov A S, Shatokhin A N "Soft X-ray spectrometers based on aperiodic reflection gratings and their application" Phys. Usp. 64 495–514 (2021)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 25th, April 2020, revised: 27th, June 2020, 29th, June 2020

Оригинал: Рагозин Е Н, Вишняков Е А, Колесников А О, Пирожков А С, Шатохин А Н «Спектрометры для мягкого рентгеновского диапазона на основе апериодических отражательных решёток и их применение» УФН 191 522–542 (2021); DOI: 10.3367/UFNr.2020.06.038799

References (76) Cited by (8) Similar articles (20) ↓

  1. A.S. Pirozhkov, E.N. Ragozin “Aperiodic multilayer structures in soft X-ray optics58 1095–1105 (2015)
  2. V.V. Lider “X-ray fluorescence imaging61 980–999 (2018)
  3. P. Mazarov, V.G. Dudnikov, A.B. Tolstoguzov “Electrohydrodynamic emitters of ion beams63 1219–1255 (2020)
  4. A.E. Ieshkin, A.B. Tolstoguzov et alGas-dynamic sources of cluster ions for basic and applied research65 677–705 (2022)
  5. V.V. Lider “X-ray crystal interferometers57 1099–1117 (2014)
  6. A.I. Protsenko, I.A. Eliovich et alInvestigation of the dynamics of the Belousov—Zhabotinsky reaction by time-resolved X-ray absorption spectroscopy using adaptive X-ray optical elements66 1258–1261 (2023)
  7. M.A. Proskurnin, V.R. Khabibullin et alPhotothermal and optoacoustic spectroscopy: state of the art and prospects65 270–312 (2022)
  8. P.V. Zinin, K.M. Bulatov et alRemote measurement of the temperature distribution on the surface of solids under high-power laser irradiation65 852–863 (2022)
  9. V.V. Lider “Talbot and Talbot—Lau X-ray interferometers66 987–1007 (2023)
  10. V.M. Petrov, P.M. Agruzov et alBroadband integrated optical modulators: achievements and prospects64 722–739 (2021)
  11. I.Yu. Eremchev, D.V. Prokopova et alThree-dimensional fluorescence nanoscopy of single quantum emitters based on the optics of spiral light beams65 617–626 (2022)
  12. D.A. Zolotov, V.E. Asadchikov et alNew approaches to three-dimensional dislocation reconstruction in silicon from X-ray topo-tomography data66 943–950 (2023)
  13. V.V. Lider “X-ray refraction introscopy67 (4) (2024)
  14. A.S. Bugaev, P.A. Eroshkin et alLow-power X-ray tubes: the current status56 691–703 (2013)
  15. M.I. Lomaev, V.S. Skakun et alExcilamps: efficient sources of spontaneous UV and VUV radiation46 193–209 (2003)
  16. D.V. Kazantsev, E.A. Kazantseva “Scattering type apertureless scaning near-field optical microscopy”, accepted
  17. V.A. Belyakov, V.E. Dmitrienko “Polarization phenomena in x-ray optics32 697–719 (1989)
  18. I.D. Novikov, S.F. Likhachev et alObjectives of the Millimetron Space Observatory science program and technical capabilities of its realization64 386–419 (2021)
  19. V.Yu. Khomich, V.A. Shmakov “Large-sized mirrors for power optics62 249–256 (2019)
  20. M.M. Barysheva, A.E. Pestov et alPrecision imaging multilayer optics for soft X-rays and extreme ultraviolet bands55 681–699 (2012)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions