Issues

 / 

2021

 / 

May

  

Instruments and methods of investigation


Soft X-ray spectrometers based on aperiodic reflection gratings and their application

, , , ,
Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation

This paper is concerned with the history, properties, development, application, and prospects of soft X-ray (2—300 Å) VLS spectrometers, i.e., spectrometers with reflection diffraction gratings whose spacing varies monotonically across the aperture according to a prescribed law (so-called Varied Line-Space (VLS) gratings). An important feature of grazing-incidence VLS spectrometers is that the spectrum is formed on a nearly flat surface perpendicular (or slightly inclined) to the diffracted beams, making them perfectly compatible with modern CCD detectors. VLS spectrometers are employed for the spectroscopy of laboratory and astrophysical plasmas, including the diagnostics of relativistic laser-produced plasmas, for measuring the linewidth of an X-ray laser, for recording the high-order harmonics of laser radiation, and the registering the emission of fast electric discharges and other laboratory X-ray sources. Instruments with VLS gratings are employed to advantage in reflectometry/metrology, X-ray fluorescence analysis, and microscopy with the use of synchrotron, free-electron laser, and laser-produced plasma radiation, as well as in SXR emission spectroscopy, combined with an electron microscope (SXES). Recent years have seen the active development of VLS spectrometers dedicated to the investigation of the electronic structure of different materials and molecules by resonant inelastic X-ray scattering (RIXS) spectroscopy with synchrotron radiation. Among recent trends is the development of VLS gratings with a multilayer reflective coating and extension of the operating spectral range towards 'tender' X-rays ($\hbar \omega \sim& 1.5—6 keV), some projects aiming to achieve a resolving power $\lambda /\delta \lambda \sim 10^5$ in the region $\hbar \omega \sim 1$ keV.

Fulltext pdf (2.9 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2020.06.038799
Keywords: soft X-ray radiation, aperiodic reflection diffraction grating (VLS grating), flat-field spectrometer, scanning spectrometer/monochromator, stigmatic (imaging) spectrometer
PACS: 07.60.−j, 07.85.−m, 07.85.Fv, 07.85.Nc, 07.87.+v, 42.79.−e (all)
DOI: 10.3367/UFNe.2020.06.038799
URL: https://ufn.ru/en/articles/2021/5/d/
000691278700004
2-s2.0-85112829433
2021PhyU...64..495R
Citation: Ragozin E N, Vishnyakov E A, Kolesnikov A O, Pirozhkov A S, Shatokhin A N "Soft X-ray spectrometers based on aperiodic reflection gratings and their application" Phys. Usp. 64 495–514 (2021)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 25th, April 2020, revised: 27th, June 2020, 29th, June 2020

Оригинал: Рагозин Е Н, Вишняков Е А, Колесников А О, Пирожков А С, Шатохин А Н «Спектрометры для мягкого рентгеновского диапазона на основе апериодических отражательных решёток и их применение» УФН 191 522–542 (2021); DOI: 10.3367/UFNr.2020.06.038799

References (76) ↓ Cited by (14) Similar articles (20)

  1. Rowland H A Phil. Mag. 13 469 (1882)
  2. Samson J A R Techniques Of Vacuum Ultraviolet Spectroscopy (New York: Wiley, 1967)
  3. Schumann V Akad. Wissenschaften Wien 102 (2A) 625 (1893)
  4. Mack J E, Stehn J R, Edlén B J. Opt. Soc. Am. 22 245 (1932)
  5. Edleacute;n B Rep. Prog. Phys. 26 181 (1963); Per. na russk. yaz., Edlen B Usp. Fiz. Nauk 89 483 (1966)
  6. Cornu M A C.R. Acad. Sci. 117 1032 (1893)
  7. Harada T, Moriyama S, Kita T Jpn. J. Appl. Phys. 14 (S1) 175 (1975)
  8. Harada T, Kita T Appl. Opt. 19 3987 (1980)
  9. Kita T et al Appl. Opt. 22 512 (1983)
  10. Kita T, Harada T Appl. Opt. 31 1399 (1992)
  11. Hettrick M C, Underwood J H AIP Conf. Proc. 147 237 (1986)
  12. Hettrick M C et al Appl. Opt. 27 200 (1988)
  13. Underwood J H, Attwood D T Phys. Today 37 (4) 44 (1984); Andervud Dzh Kh, Attvud D T Usp. Fiz. Nauk 151 105 (1987)
  14. Namioka T J. Opt. Soc. Am. 49 446 (1959)
  15. Ragozin E N, Vishnyakov E A, Kolesnikov A O, Shatokhin A N Aperiodicheskie Elementy v Optike Myagkogo Rentgenovskogo Diapazona (Pod red. E N Ragozina) (M.: Fizmatlit, 2018)
  16. Ragozin E N et al Proc. SPIE 10235 102350L (2017)
  17. Vishnyakov E A, Kolesnikov A O, Ragozin E N, Shatokhin A N Kvantovaya Elektron. 46 953 (2016); Vishnyakov E A, Kolesnikov A O, Ragozin E N, Shatokhin A N Quantum Electron. 46 953 (2016)
  18. Pirozhkov A S et al Phys. Rev. Lett. 108 135004 (2012)
  19. Pirozhkov A S et al New J. Phys. 16 093003 (2014)
  20. Pirozhkov A S et al Sci. Rep. 7 17968 (2017)
  21. Neely D et al AIP Conf. Proc. 426 479 (1998)
  22. Koike M et al Rev. Sci. Instrum. 74 1156 (2003)
  23. Dinh T H et al Rev. Sci. Instrum. 87 123106 (2016)
  24. Terauchi M et al Microsc. Microanal. 20 692 (2014)
  25. Terauchi M et al J. Electron Microsc. 59 (4) 251 (2010)
  26. Imazono T et al Appl. Opt. 51 2351 (2012)
  27. JEOL Ltd. Soft X-ray Emission Spectrometer (SXES), https://www.jeol.co.jp/en/products/detail/SXES.html
  28. Beiersdorfer P et al Rev. Sci. Instrum. 75 3723 (2004)
  29. Dunn J et al Rev. Sci. Instrum. 79 10E314 (2008)
  30. Hettrick Scientific, http://hettrickscientific.com/
  31. Koch J A et al Phys. Rev. Lett. 68 3291 (1992)
  32. Underwood J H et al Proc. SPIE 3150 40 (1997)
  33. Wang J-J et al Chinese Phys. C 39 048001 (2015)
  34. Du L et al Nucl. Instrum. Meth. Phys. Res. A 877 65 (2018)
  35. Miyake A et al Proc. SPIE 5037 647 (2003)
  36. Fuchs O et al Rev. Sci. Instrum. 80 063103 (2009)
  37. Chuang Y-D et al Rev. Sci. Instrum. 88 013110 (2017)
  38. Warwick T et al J. Synchrotron Rad. 21 736 (2014)
  39. Dvorak J et al Rev. Sci. Instrum. 87 115109 (2016)
  40. Imazono T et al Appl. Opt. 57 7770 (2018)
  41. Kolachevskii N N, Pirozhkov A S, Ragozin E N Kvantovaya Elektron. 30 428 (2000); Kolachevsky N N, Pirozhkov A S, Ragozin E N Quantum Electron. 30 428 (2000)
  42. Pirozhkov A S, Ragozin E N Usp. Fiz. Nauk 185 1203 (2015); Pirozhkov A S, Ragozin E N Phys. Usp. 58 1095 (2015)
  43. Ziegler E et al Proc. SPIE 3737 386 (1999)
  44. Rife J C et al Phys. Scr. 41 418 (1990)
  45. Barbee T W, Bixler J V, Dietrich D D Phys. Scr. 41 740 (1990)
  46. Senf F et al Opt. Express 24 13220 (2016)
  47. Sokolov A et al ""High efficiency multilayer coated blazed grating for tender X-rays" Physics of X-Ray and Neutron Multilayer Structures Workshop 2016: PXRNMS Workshop, Enschede, Netherlands, 10 November 2016 (2016); Sokolov A et al https://www.utwente.nl/en/tnw/xuv/workshops/archive/pxrnm-workshop-2016/oral-presentations/sokolov-pxrnms-2016-high-efficiency-multilayer-coated-blazed-grating-for-tender-x-rays.pdf
  48. Hettrick M C, Bowyer S Appl. Opt. 22 3921 (1983)
  49. Hettrick M C et al Appl. Opt. 24 1737 (1985)
  50. Bowyer S et al Astrophys. J. Suppl. 102 129 (1996)
  51. Sirk M M et al Astrophys. J. Suppl. 110 347 (1997)
  52. Craig N et al Astrophys. J. Suppl. 113 131 (1997)
  53. The Space Telescope Science Institute (STScI). EUVE All-Sky Survey Results, https://archive.stsci.edu/euve/allsky/results.html
  54. Poletto L, Tondello G Appl. Opt. 40 2778 (2001)
  55. Frassetto F et al Opt. Express 21 18290 (2013)
  56. Firsov A et al J. Phys. Conf. Ser. 425 152013 (2013)
  57. Mitzner R et al J. Phys. Chem. Lett. 4 3641 (2013)
  58. Erko A et al Opt. Express 22 16897 (2014)
  59. Mantouvalou I et al Appl. Phys. Lett. 108 201106 (2016)
  60. Yin Z et al Opt. Lett. 43 4390 (2018)
  61. Kando M et al Phys. Rev. Lett. 103 235003 (2009)
  62. Vishnyakov E A, Shatokhin A N, Ragozin E N Kvantovaya Elektron. 45 371 (2015); Vishnyakov E A, Shatokhin A N, Ragozin E N Quantum Electron. 45 371 (2015)
  63. Vishnyakov E A i dr Kvantovaya Elektron. 47 54 (2017); Vishnyakov E A et al Quantum Electron. 47 54 (2017)
  64. Shatokhin A N et al Opt. Express 26 19009 (2018)
  65. Vishnyakov E A i dr Kvantovaya Elektron. 48 916 (2018); Vishnyakov E A et al Quantum Electron. 48 916 (2018)
  66. Levashov V E, Mednikov K N, Pirozhkov A S, Ragozin E N Radiat. Phys. Chem. 75 1819 (2006)
  67. Ragozin E N et al Proc. SPIE 4782 176 (2002)
  68. Kolesnikov A O, Vishnyakov E A, Ragozin E N, Shatokhin A N Kvantovaya Elektron. 50 967 (2020); Kolesnikov A O, Vishnyakov<?tlsb><?twb> E A, Ragozin E N, Shatokhin A N Quantum Electron. 50 967 (2020)
  69. Shatokhin A N, Vishnyakov E A, Kolesnikov A O, Ragozin E N Kvantovaya Elektron. 49 779 (2019); Shatokhin A N, Vishnyakov E A, Kolesnikov A O, Ragozin E N Quantum Electron. 49 779 (2019)
  70. Kolesnikov A O, Vishnyakov E A, Shatokhin A N, Ragozin E N Kvantovaya Elektron. 49 1054 (2019); Kolesnikov A O, Vishnyakov E A, Shatokhin A N, Ragozin E N Quantum Electron. 49 1054 (2019)
  71. Harada T et al J. Jpn. Soc. Precision Eng. 42 888 (1976)
  72. Hitachi High-Tech America, Inc. Diffraction Gratings, http://www.hitachi-hightech.com/us/product_detail/?pn=ana-grating
  73. Namioka T, Koike M Appl. Opt. 34 2180 (1995)
  74. Koike M et al Proc. SPIE 4146 163 (2000)
  75. Shimadzu. Diffraction Gratings. Laminar-type Replica Diffraction Gratings for Soft X-ray Region, https://www.shimadzu.com/opt/products/dif/o-k25cur0000006zd0.html
  76. Lin D et al J. Synchrotron Rad. 26 1782 (2019)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions