Issues

 / 

1994

 / 

January

  

Instruments and methods of investigation


Standard quantum limits of measurement error and methods of overcoming them


Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1 build. 2, Moscow, 119991, Russian Federation

The so-called standard quantum limits (SQL) of measurement errors of coordinate, momentum, amplitude of oscillations, energy, force etc. are due to back action of the meter on the system under test, whenever the meter responds to the coordinate of the system. These SQL are not fundamental and can be surmounted by various methods. In particular, in a coordinate measurement the SQL can be overcome by means of an appropriate correlation of conjugate meter variables. Conditions of quantum nonperturbing (nondemolition) and quasi-nonperturbing measurements of the energy of electromagnetic waves are discussed. Possible methods of these measurements are reviewed. Conditions for overcoming the SQL of wave energy measurement by the optical Kerr effect are analysed. The quantum limit of error of this measurement is discussed. The effects of dissipation, dispersion and generation of combination waves are considered. Results of experiments reported in the literature are discussed. The dependence of the quantum limit of detection of an external action upon a system on the initial state of the system is considered. The relation between the measurement error of an observable A and a perturbation of an observable B, when [A,B] is an operator, is examined.

Fulltext pdf (904 KB)
Fulltext is also available at DOI: 10.1070/PU1994v037n01ABEH000004
PACS: 03.65.Bz, 06.20.Dk
DOI: 10.1070/PU1994v037n01ABEH000004
URL: https://ufn.ru/en/articles/1994/1/d/
A1994NA86300004
Citation: Vorontsov Yu I "Standard quantum limits of measurement error and methods of overcoming them" Phys. Usp. 37 81–96 (1994)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Воронцов Ю И «Стандартные квантовые пределы погрешностей измерений и методы их преодоления» УФН 164 89–104 (1994); DOI: 10.3367/UFNr.0164.199401d.0089

References (69) Cited by (9) Similar articles (12) ↓

  1. Ya.S. Greenberg, Yu.A. Pashkin, E. Il’ichev “Nanomechanical resonatorsPhys. Usp. 55 382–407 (2012)
  2. Yu.L. Sokolov “An interference method for measuring atomic state parametersPhys. Usp. 42 481–503 (1999)
  3. M.I. Kornfel’d “Experimental error and reliability of simplest experimentsSov. Phys. Usp. 8 299–304 (1965)
  4. S.P. Vyatchanin, S.E. Strigin “Parametric oscillatory instability in gravitational wave laser detectorsPhys. Usp. 55 1115–1123 (2012)
  5. I.S. Zeilikovich, A.M. Lyalikov “Holographic methods for regulating the sensitivity of interference measurements for transparent media diagnosticsSov. Phys. Usp. 34 (1) 74–85 (1991)
  6. G.R. Ivanitskii “Modern matrix thermovision in biomedicinePhys. Usp. 49 1263–1288 (2006)
  7. E.B. Levichev, A.N. Skrinskii et alHigh precision particle mass measurements using the KEDR detector at the VEPP-4M colliderPhys. Usp. 57 66–79 (2014)
  8. V.L. Vaks, E.G. Domracheva et alExhaled breath analysis: physical methods, instruments and medical diagnosticsPhys. Usp. 57 684–701 (2014)
  9. A.I. Kartashev, I.Sh. Etsin “Methods of Measuring Small Phase Difference Changes in Interference DevicesSov. Phys. Usp. 15 232–250 (1972)
  10. P.G. Kryukov “Lasers and fiber optics for astrophysicsPhys. Usp. 61 1072–1078 (2018)
  11. V.P. Savinykh, I.Yu. Vasyutinsky, D.V. Dement’ev “Vertical refraction of light in the atmospheric surface layer: traditional problems of determining refraction and new technical achievementsPhys. Usp. 65 864–879 (2022)
  12. D.V. Kazantsev, E.A. Kazantseva “Scattering-type apertureless scanning near-field optical microscopyPhys. Usp. 67 588–628 (2024)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions