Выпуски

 / 

2022

 / 

Август

  

Обзоры актуальных проблем


Фазовые сингулярности и оптические вихри в фотонике

 а, б,  в, г,  в, г,  д, е,  а, б,  в, г
а Институт систем обработки изображений РАН — филиал ФНИЦ "Кристаллография и фотоника" РАН, ул. Молодогвардейская 151, Самара, 443001, Российская Федерация
б Самарский национальный исследовательский университет имени академика С. П. Королева, Московское ш. 34, Самара, 443086, Российская Федерация
в Институт автоматики и процессов управления Дальневосточного отделения РАН, Владивосток, Российская Федерация
г Дальневосточный федеральный университет, ул. Суханова 8, Владивосток, 690950, Российская Федерация
д Swinburne University of Technology, Melbourne, Australia
е Melbourne Centre for Nanofabrication, Australian National Fabrication Facility, Wellington Road, Clayton 151, Melbourne, 3168, Australia

Со второй половины XX в. широкое распространение получили идеи разработки методов формирования оптических вихрей (ОВ) или ОВ-пучков — областей кругового движения потока энергии в электромагнитной волне вокруг так называемых точек фазовых сингулярностей. Уникальность таких световых полей заключается в особой спиральной структуре волнового фронта, обеспечивающей наличие у них орбитального углового момента (ОУМ), который может быть передан веществу и вызвать вращательное движение нано- и микрообъектов. В настоящее время ОВ-пучки активно используются для решения как прикладных, так и фундаментальных проблем оптики и фотоники. Последовательно рассмотрены этапы развития, а также основные достоинства и недостатки методов формирования ОВ-пучков — от возникновения фазовых сингулярностей при рассеянии света в неоднородных средах до последних разработок в области вихревых микролазеров для контролируемой генерации световых полей с заданным ОУМ на нано- и микромасштабе.

Текст: pdf (Полный текст предоставляется по подписке)
English fulltext is available at DOI: 10.3367/UFNe.2021.07.039028
Ключевые слова: сингулярная оптика, оптические вихри, топологический заряд, спиральная фазовая пластина, спин-орбитальное взаимодействие, вилкообразные голограммы, метаповерхности, интегрально-оптические элементы, лазерная нанофабрикация
PACS: 07.60.−j, 42.62.−b, 42.70.−a, 42.79.−e, 42.82.−m, 78.20.Fm (все)
DOI: 10.3367/UFNr.2021.07.039028
URL: https://ufn.ru/ru/articles/2022/8/b/
001099034300001
2-s2.0-85182905740
Цитата: Порфирьев А П, Кучмижак А А, Гурбатов С О, Йодказис С, Хонина С Н, Кульчин Ю Н "Фазовые сингулярности и оптические вихри в фотонике" УФН 192 841–866 (2022)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Поступила: 17 мая 2021, доработана: 19 июля 2021, 23 июля 2021

English citation: Porfirev A P, Kuchmizhak A A, Gurbatov S O, Juodkazis S, Khonina S N, Kulchin Yu N “Phase singularities and optical vortices in photonicsPhys. Usp. 65 789–811 (2022); DOI: 10.3367/UFNe.2021.07.039028

Список литературы (508) Статьи, ссылающиеся на эту (14) Похожие статьи (20) ↓

  1. М.А. Ремнев, В.В. Климов «Метаповерхности: новый взгляд на уравнения Максвелла и новые методы управления светом» УФН 188 169–205 (2018)
  2. Б.В. Соколенко, Н.В. Шостка, О.С. Каракчиева «Оптические ловушки и манипуляторы. Современные концепции и дальнейшие перспективы» УФН 192 867–892 (2022)
  3. Е.Г. Абрамочкин, В.Г. Волостников «Спиральные пучки света» УФН 174 1273–1300 (2004)
  4. М.В. Рыбин, М.Ф. Лимонов «Резонансные эффекты в фотонных кристаллах и метаматериалах (к 100-летию Физико-технического института им. А.Ф. Иоффе РАН)» УФН 189 881–898 (2019)
  5. С.И. Лепешов, А.Е. Краснок и др. «Гибридная нанофотоника» УФН 188 1137–1154 (2018)
  6. А.В. Кильдишев, В.М. Шалаев «Трансформационная оптика и метаматериалы» УФН 181 59–70 (2011)
  7. Н.А. Веретенов, Н.Н. Розанов, С.В. Федоров «Лазерные солитоны: топологические и квантовые эффекты» УФН 192 143–176 (2022)
  8. К.Л. Кошелев, З.Ф. Садриева и др. «Связанные состояния непрерывного спектра в фотонных структурах» УФН 193 528–553 (2023)
  9. М.И. Трибельский, А.Е. Мирошниченко «Резонансное рассеяние электромагнитных волн малыми металлическими частицами: новый взгляд на старую проблему» УФН 192 45–68 (2022)
  10. К.В. Барышникова, С.С. Харинцев и др. «Металинзы для получения изображений с субволновым разрешением» УФН 192 386–412 (2022)
  11. В.И. Балыкин «Плазмонный нанолазер: современное состояние и перспективы» УФН 188 935–963 (2018)
  12. Ю.В. Владимирова, В.Н. Задков «Квантовая оптика единичных квантовых излучателей в ближнем поле наночастицы» УФН 192 267–293 (2022)
  13. А.Е. Грищенко, А.Н. Черкасов «Ориентационный порядок в поверхностных слоях полимерных материалов» УФН 167 269–285 (1997)
  14. В.А. Беляков, В.Е. Дмитриенко «Голубая фаза жидких кристаллов» УФН 146 369–415 (1985)
  15. Г.Н. Макаров «На пути к молекулярному лазерному разделению изотопов урана» УФН 192 569–608 (2022)
  16. В.В. Климов «Оптические нанорезонаторы» УФН 193 279–304 (2023)
  17. Г.Н. Макаров «Новые результаты по лазерному разделению изотопов с использованием низкоэнергетических методов» УФН 190 264–290 (2020)
  18. Г.Н. Макаров «Новые подходы к молекулярному лазерному разделению изотопов урана» УФН 194 48–59 (2024)
  19. Г.Н. Макаров «Низкоэнергетические методы молекулярного лазерного разделения изотопов» УФН 185 717–751 (2015)
  20. С.В. Чекалин, В.П. Кандидов «От самофокусировки световых пучков — к филаментации лазерных импульсов» УФН 183 133–152 (2013)

Список формируется автоматически.

© Успехи физических наук, 1918–2024
Электронная почта: ufn@ufn.ru Телефоны и адреса редакции О журнале Пользовательское соглашение