Accepted articles

Instruments and methods of investigation


Scattering type apertureless scaning near-field optical microscopy

 a,  b
a Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation
b Moscow Technological University, prosp. Vernadskogo 78, Moscow, 119454, Russian Federation

Review paper considers the last advances achieved with Apertureless Scanning Near-field Microscopy (ASNOM), operating in light scattering mode (sSNOM) without any wavelength change. This review considers principles of operation of an ASNOM, technical solutions, artifacts known for ASNOM instruments. Theoretical models being used in ASNOM technique are considered. More success is mentioned in light influence on a sample under a tip (e.g. thermal expansion), mode articles were published concerning THz and microwave bands. Material contrast in surface imaging is considered, as well as surface spectroscopy of nanoscale areas. Images of standing and running plasmo- and phonon-polaritone waves were published, in particular over van-der-Waals materials and ghaphene. Hybrydisation of polaritone states was observed, due to interaction of the carriers in thin 2D object to the substrate. Lateral resolution of ASNOM (10-10nm)did not changed last 5-8 years significantly.

Keywords: микроскопия ближнего оптического поля, наноструктуры, спектроскопия, ASNOM, sSNOM
PACS: 07.79.Fc, 68.37.Ps, 07.60.−j, 87.64.Je, 61.46.+w, 85.30.De, 68.65.Pq (all)
DOI: 10.3367/UFNe.2024.02.039652
Citation: Kazantsev D V, Kazantseva E A "Scattering type apertureless scaning near-field optical microscopy" Phys. Usp., accepted

Received: 26th, May 2023, revised: 4th, October 2023, 27th, February 2024

Оригинал: Казанцев Д В, Казанцева Е А «Безапертурная ближнепольная микроскопия упругого рассеяния света» УФН, принята к публикации; DOI: 10.3367/UFNr.2024.02.039652

Similar articles (13) ↓

  1. R.Z. Bakhtizin, T. Hashizume et alScanning tunneling microscopy of fullerenes on metal and semiconductor surfaces40 275–290 (1997)
  2. M.A. Proskurnin, V.R. Khabibullin et alPhotothermal and optoacoustic spectroscopy: state of the art and prospects65 270–312 (2022)
  3. I.R. Nabiev, R.G. Efremov, G.D. Chumanov “Surface-enhanced Raman scattering and its application to the study of biological molecules31 241–262 (1988)
  4. I.S. Osad’ko “The near-field microscope as a tool for studying nanoparticles53 77–81 (2010)
  5. P.V. Zinin, K.M. Bulatov et alRemote measurement of the temperature distribution on the surface of solids under high-power laser irradiation65 852–863 (2022)
  6. I.V. Antonova “2D printing technologies using graphene based materials60 204–218 (2017)
  7. E.N. Ragozin, E.A. Vishnyakov et alSoft X-ray spectrometers based on aperiodic reflection gratings and their application64 495–514 (2021)
  8. M.I. Lomaev, V.S. Skakun et alExcilamps: efficient sources of spontaneous UV and VUV radiation46 193–209 (2003)
  9. I.V. Antonova “Chemical vapor deposition growth of graphene on copper substrates: current trends56 1013–1020 (2013)
  10. A.S. Pirozhkov, E.N. Ragozin “Aperiodic multilayer structures in soft X-ray optics58 1095–1105 (2015)
  11. G.V. Murastov, A.A. Lipovka et alLaser reduction of graphene oxide: local control of material properties66 1105–1133 (2023)
  12. S.G. Rautian “Real spectral apparatus1 245–273 (1958)
  13. A.V. Kozlovskii “Generation оf squeezed (sub-Poissonian) light by а multimode laser50 1243–1258 (2007)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions