Issues

 / 

2022

 / 

July

  

Instruments and methods of investigation


Gas-dynamic sources of cluster ions for basic and applied research

  a,   b, c, d,  e,  d,  a
a Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1 build. 2, Moscow, 119991, Russian Federation
b Universidade Nova de Lisboa, Campus de Campolide, Lisboa, 1099-085, Portugal
c Ryazan State Radio Engineering University named after V.F. Utkin, Gagarina Street 59/1, Ryazan, 390005, Russian Federation
d Wuhan University, Wuhan, Hubei Province, China
e Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russian Federation

State of the art in the development and application of gas cluster ion sources is considered. The mechanisms of neutral cluster formation, the techniques applied to study their flows and regularities of ionization and the principles of mass separation of ion beams are discussed. Design features of some cluster ion beam sources intended for various applied and academic studies are considered. Use of such sources for controlled modification of surface topography, ultra-shallow ion implantation, development of analytical techniques, and stimulation of surface chemical reactions is analyzed.

Fulltext pdf (1.3 MB)
To the readers pdf (115 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2021.06.038994
Keywords: clusters, gas cluster ions, ion sources, supersonic flows, ionization, mass separation, sputtering, self-organization, ion implantation, XPS, SIMS
PACS: 29.25.Ni, 36.40.−c, 41.75.−i, 68.49.Sf (all)
DOI: 10.3367/UFNe.2021.06.038994
URL: https://ufn.ru/en/articles/2022/7/c/
001100230300003
2-s2.0-85122825374
2022PhyU...65..677I
Citation: Ieshkin A E, Tolstoguzov A B, Korobeishchikov N G, Pelenovich V O, Chernysh V S "Gas-dynamic sources of cluster ions for basic and applied research" Phys. Usp. 65 677–705 (2022)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 23rd, March 2021, revised: 20th, May 2021, 7th, June 2021

Оригинал: Иешкин А Е, Толстогузов А Б, Коробейщиков Н Г, Пеленович В О, Черныш В С «Газодинамические источники кластерных ионов для решения фундаментальных и прикладных задач» УФН 192 722–753 (2022); DOI: 10.3367/UFNr.2021.06.038994

References (304) ↓ Cited by (13) Similar articles (12)

  1. Brown I G (Ed.) The Physics And Technology Of Ion Sources (New York: John Wiley and Sons, 1989); Translated into Russian, Brown I G (Ed.) Fizika I Tekhnologiya Istochnikov Ionov (Moscow: Mir, 1998)
  2. Dudnikov V G Phys. Usp. 62 1233 (2019); Dudnikov V G Usp. Fiz. Nauk 189 1315 (2019)
  3. Mazarov P, Dudnikov V G, Tolstoguzov A B Phys. Usp. 63 1219 (2020); Mazarov P, Dudnikov V G, Tolstoguzov A B Usp. Fiz. Nauk 190 1293 (2020)
  4. Kantrowitz A, Grey J Rev. Sci. Instrum. 22 328 (1951)
  5. Kistiakowsky G B, Slichter W P Rev. Sci. Instrum. 22 333 (1951)
  6. Henkes W Z. Naturforsch. A 16 842 (1961)
  7. Bentley P G Nature 190 432 (1961)
  8. Hagena O-F, Henkes W Z. Naturforsch. A 20 1344 (1965)
  9. Becker E W et al "Development and construction of an injector using hydrogen cluster ions for nuclear fusion devices" Kernforschungszentrum Karlsruhe KFK 2016 (Karlsruhe: Gesellschaft für Kernforschung M.B.H., 1974), Status Report as of December 1973
  10. Henkes W P R, Klingelhöfer R J. Phys. Colloques 50 C2-159 (1989)
  11. Henkes P R W Rev. Sci. Instrum. 61 360 (1990)
  12. Yamada I AIP Conf. Proc. 1321 1 (2011)
  13. Anderson J B, Fenn J B Phys. Fluids 8 780 (1965)
  14. Eletskii A V, Smirnov B M Sov. Phys. Usp. 32 763 (1989); Eletskii A V, Smirnov B M Usp. Fiz. Nauk 159 45 (1989)
  15. Makarov G N Phys. Usp. 49 117 (2006); Makarov G N Usp. Fiz. Nauk 176 121 (2006)
  16. Karpenko Yu A, Baturin V A Zh. Nanoelektron. Fiz. 4 (3) 03015 (2012)
  17. Smirnov B M Phys. Usp. 46 589 (2003); Smirnov B M Usp. Fiz. Nauk 173 609 (2003)
  18. Andreev A A et al Nanotekhnol. Razrabotka, Primenenie XXI Vek 1 (1) 23 (2009)
  19. Avduevskii V S et al Gazodinamika Sverkhzvukovykh Neizobaricheskikh Strui (Gas Dynamics Of Supersonic Nonisobaric Jets) (Moscow: Mashinostroenie, 1989)
  20. Pauly H Atom, Molecule, And Cluster Beams Vol. 2 (Berlin: Springer, 2000)
  21. Campargue R (Ed.) Atomic And Molecular Beams: The State Of The Art 2000 (Berlin: Springer, 2001)
  22. Scoles G (Ed.) Atomic And Molecular Beam Methods Vol. 1 (New York: Oxford Univ. Press, 1988)
  23. Scoles G (Ed.) Atomic And Molecular Beam Methods Vol. 2 (New York: Oxford Univ. Press, 1992)
  24. Aleksandrov M L, Kusner Yu S Gazodinamicheskie, Molekulyarnye, Ionnye I Klastirovannye Puchki (Gas Dynamic, Molecular, Ion, And Clustered Beams) (Leningrad: Nauka, 1989)
  25. Hagena O F, Obert W J. Chem. Phys. 56 1793 (1972)
  26. Lu H et al J. Chem. Phys. 132 124303 (2010)
  27. Chen G et al J. Appl. Phys. 108 064329 (2010)
  28. Korobeishchikov N G et al Vacuum 119 256 (2015)
  29. Dulov V G, Luk’yanov G A Gazodinamika Protsessov Istecheniya (Gas Dynamics Of Outflow Processes) (Novosibirsk: Nauka, 1984)
  30. Ashkenas H, Sherman F S Rarefied Gas Dynamics. Proc. Of The Fourth Intern. Symp., Toronto, 1964 Vol. 2 (Ed. J H de Leeuw) (New York: Academic Press, 1965) p. 84
  31. Crist S, Sherman P M, Glass D R AIAA J. 4 68 (1966)
  32. Beijerinck H C W et al Chem. Phys. 96 153 (1985)
  33. van Eck H J N J. Appl. Phys. 105 063307 (2009)
  34. Zarvin A E, Sharafutdinov R G J. Appl. Mech. Tech. Phys. 20 744 (1979); Zarvin A E, Sharafutdinov R G Priklad. Mekh. Tekh. Fiz. (6) 107 (1979)
  35. Campargue R J. Phys. Chem. 88 4466 (1984)
  36. Weaver B D, Frankl D R Rev. Sci. Instrum. 58 2115 (1987)
  37. Lewis C H, Carlson D J AIAA J. 2 776 (1964)
  38. Hagena O F Rev. Sci. Instrum. 63 2374 (1992)
  39. Even U Adv. Chem. 2014 636042 (2014)
  40. Chekmarev S F, Stankus N V Sov. Phys. Tech. Phys. 29 920 (1984); Chekmarev S F, Stankus N V Zh. Tekh. Fiz. 54 1576 (1984)
  41. Korobeishchikov N G, Zarvin A E, Madirbaev V Z Tech. Phys. 49 973 (2004); Korobeishchikov N G, Zarvin A E, Madirbaev V Z Zh. Tekh. Fiz. 74 (8) 21 (2003)
  42. Dimov G I Prib. Tekh. Eksp. (5) 168 (1968)
  43. Christen W, Rademann K, Even U J. Chem. Phys. 125 174307 (2006)
  44. Irimia D et al Rev. Sci. Instrum. 80 113303 (2009)
  45. Popok V N et al Rev. Sci. Instrum. 73 4283 (2002)
  46. Andreev A A et al Vacuum 91 47 (2013)
  47. Zeng X M et al Chinese Phys. C 41 087003 (2017)
  48. Ieshkin A E, Ermakov Y A, Chernysh V S Tech. Phys. Lett. 41 1072 (2015); Ieshkin A E, Ermakov Y A, Chernysh V S Pis’ma Zh. Tekh. Fiz. 41 (22) 8 (2015)
  49. Bier K, Schmidt B Z. Angew. Phys. 13 496 (1961)
  50. Zarvin A E et al Tech. Phys. Lett. 41 1103 (2015); Zarvin A E et al Pis’ma Zh. Tekh. Fiz. 41 (22) 74 (2015)
  51. Ieshkin A et al Nucl. Instrum. Meth. Phys. Res. A 795 395 (2015)
  52. Ieshkin A E et al J. Vis. 22 741 (2019)
  53. Kislyakov N I, Rebrov A K, Sharafutdinov R G J. Appl. Mech. Tech. Phys. 16 187 (1975); Kislyakov N I, Rebrov A K, Sharafutdinov R G Priklad. Mekh. Tekh. Fiz. (2) 42 (1975)
  54. Zarvin A E, Yaskin A S, Kalyada V V J. Appl. Mech. Tech. Phys. 59 86 (2018); Zarvin A E, Yaskin A S, Kalyada V V Priklad. Mekh. Tekh. Fiz. (1) 99 (2018)
  55. Wegner K et al J. Phys. D 39 R439 (2006)
  56. Hagena O F Phys. Fluids 17 894 (1974)
  57. Hagena O F Surf. Sci. 106 101 (1981)
  58. Hagena O F Z. Phys. D 4 291 (1987)
  59. Korobeishchikov N G, Roenko M A, Tarantsev G I J. Clust. Sci. 28 2529 (2017)
  60. Smith R A, Ditmire T, Tisch J W G Rev. Sci. Instrum. 69 3798 (1998)
  61. Sharma P K, Knuth E L, Young W S J. Chem. Phys. 64 4345 (1976)
  62. Buck U, Krohne R J. Chem. Phys. 105 5408 (1996)
  63. Karnbach R et al Rev. Sci. Instrum. 64 2838 (1993)
  64. Korobeishchikov N G et al Plasma Chem. Plasma Process. 25 319 (2005)
  65. Zarvin A E et al Eur. Phys. J. D 49 101 (2008)
  66. Winkler M, Harnes J, Børve K J J. Phys. Chem. A 115 13259 (2011)
  67. Lundwall M et al J. Chem. Phys. 126 214706 (2007)
  68. Nagasaka M et al J. Chem. Phys. 137 214305 (2012)
  69. Pysanenko A et al Int. J. Mass Spectrom. 461 116514 (2021)
  70. Shyrokorad D, Kornich G, Buga S Mater. Today Commun. 23 101107 (2020)
  71. Yamada I et al Mater. Sci. Eng. A 253 249 (1998)
  72. Bell A J et al J. Phys. D 26 994 (1993)
  73. Bush A M et al J. Phys. Chem. A 102 6457 (1998)
  74. Ditmire T et al Phys. Rev. A 53 3379 (1996)
  75. Ramos A et al Phys. Rev. A 72 053204 (2005)
  76. Kim K Y, Kumarappan V, Milchberg H M Appl. Phys. Lett. 83 3210 (2003)
  77. Gupta K C et al J. Appl. Phys. 118 114308 (2015)
  78. Dorchies F et al Phys. Rev. A 68 023201 (2003)
  79. Wörmer J, Joppien M, Möller T Chem. Phys. Lett. 182 632 (1991)
  80. Tchaplyguine M et al J. Chem. Phys. 120 345 (2004)
  81. Amar F G, Smaby J, Preston T J J. Chem. Phys. 122 244717 (2005)
  82. Harnes J et al J. Phys. Chem. A 115 10408 (2011)
  83. Bonnamy A et al J. Chem. Phys. 118 3612 (2003)
  84. Bonnamy A et al Phys. Chem. Chem. Phys. 7 963 (2005)
  85. Farges J et al J. Chem. Phys. 84 3491 (1986)
  86. Danil’chenko A G, Kovalenko S I, Samovarov V N Low Temp. Phys. 35 965 (2009); Danil’chenko A G, Kovalenko S I, Samovarov V N Fiz. Nizk. Temp. 35 1240 (2009)
  87. De Martino A et al Z. Phys. D 27 185 (1993)
  88. Fedor J et al J. Chem. Phys. 135 104305 (2011)
  89. Korobeishchikov N G, Penkov O I Vacuum 125 205 (2016)
  90. Soler J M Phys. Rev. Lett. 49 1857 (1982)
  91. Schütte S, Buck U Int. J. Mass Spectrom. 220 183 (2002)
  92. Song J H et al Nucl. Instrum. Meth. Phys. Res. B 179 568 (2001)
  93. Ryuto H et al Vacuum 84 505 (2009)
  94. Echt O et al Z. Phys. B Cond. Matter 53 71 (1983)
  95. Söderlund J et al Phys. Rev. Lett. 80 2386 (1998)
  96. Rupp D et al J. Chem. Phys. 141 044306 (2014)
  97. Bobbert C et al Eur. Phys. J. D 19 183 (2002)
  98. Korobeishchikov N G, Nikolaev I V, Roenko M A J. Phys. Conf. Ser. 1115 032016 (2018)
  99. Gao X et al J. Appl. Phys. 114 034903 (2013)
  100. Jang D G et al Appl. Phys. Lett. 105 021906 (2014)
  101. Vostrikov A A, Dubov D Yu J. Exp. Theor. Phys. 98 197 (2004); Vostrikov A A, Dubov D Yu Zh. Eksp. Teor. Fiz. 125 222 (2004)
  102. Anisimov M P Russ. Chem. Rev. 72 591 (2003); Anisimov M P Usp. Khim. 72 664 (2003)
  103. Boldarev A S et al Rev. Sci. Instrum. 77 083112 (2006)
  104. Korobeishchikov N G et al AIP Conf. Proc. 1628 885 (2014)
  105. Tao Y et al J. Appl. Phys. 119 164901 (2016)
  106. Nazarov V S et al J. Phys. Conf. Ser. 1250 012026 (2019)
  107. Even U EPJ Techn. Instrum. 2 17 (2015)
  108. Mack M E "Ionizer and method for gas-cluster ion-beam formation" Patent US 7,173,252 B2 (2007)
  109. Lee S J et al Bull. Korean Chem. Soc. 40 877 (2019)
  110. Seki T et al Nucl. Instrum. Meth. Phys. Res. B 206 902 (2003)
  111. Swenson D R Nucl. Instrum. Meth. Phys. Res. B 222 61 (2004)
  112. Toyoda N, Yamada I Nucl. Instrum. Meth. Phys. Res. B 307 269 (2013)
  113. Scheier P, Märk T D J. Chem. Phys. 86 3056 (1987)
  114. Scheier P, Märk T D Chem. Phys. Lett. 136 423 (1987)
  115. Pelenovich V O et al J. Synch. Investig. 13 344 (2019); Pelenovich V O et al Poverkhnost’. Rentgen. Sinkhrotron. Neitron. Issled. (4) 84 (2019)
  116. SIMION, https://simion.com
  117. Ono L K "Study of secondary ion emission from Si target bombarded by large cluster ions" MD Thesis (Kyoto: Kyoto Univ., 2004)
  118. Bakun A D et al Vzaimodeistvie Ionov S Poverkhnost’yu. VIP-2019. Trudy XXIV Mezhdunarodnoi Konf., 19-23 Avgusta 2019 G., Moskva, Rossiya (Interaction Of Ions With Surface VIP-2019 Proc. 24th Intern. Conf. August 19-23, 2019, Moscow, Russia) Vol. 1 (Eds E Yu Zykova et al) (Moscow: National Research Nuclear Univ. MEPhI, 2019) p. 84
  119. Fujii M et al Rapid Commun. Mass Spectrom. 28 917 (2014)
  120. Mohammadi A S et al Anal. Bioanal. Chem. 408 6857 (2016)
  121. MacCrimmon R et al Nucl. Instrum. Meth. Phys. Res. B 242 427 (2006)
  122. Toyoda N, Isogai H, Yamada I AIP Conf. Proc. 1066 431 (2008)
  123. Paruch R J, Postawa Z, Garrison B J J. Vac. Sci. Technol. B 34 03H105 (2016)
  124. Toyoda N, Houzumi S, Yamada I Nucl. Instrum. Meth. Phys. Res. B 242 466 (2006)
  125. Seliger R L J. Appl. Phys. 43 2352 (1972)
  126. Solov’ev A V, Tolstoguzov A B Sov. Phys. Tech. Phys. 32 580 (1987); Solov’ev A V, Tolstoguzov A B Zh. Tekh. Fiz. 57 953 (1987)
  127. Moritani K et al Appl. Surf. Sci. 255 948 (2008)
  128. Ohwaki K et al Nucl. Instrum. Meth. Phys. Res. B 241 614 (2005)
  129. Moritani K et al Nucl. Instrum. Meth. Phys. Res. B 432 1 (2018)
  130. Anai Y et al E-J. Surf. Sci. Nanotechnol. 14 161 (2016)
  131. Niehuis E et al Secondary Ion Mass Spectrometry SIMS V (Springer Series in Chemical Physics) Vol. 44 (Eds A Benninghoven et al) (Berlin: Springer-Verlag, 1986) p. 188
  132. Kayser S et al Surf. Interface Anal. 45 131 (2013)
  133. Yang L, Seah M P, Gilmore I S J. Phys. Chem. C 116 23735 (2012)
  134. Pelenovich V et al Vacuum 172 109096 (2020)
  135. https://www.exogenesis.us/naccel-100-specifications
  136. Kirkpatrick A et al Nucl. Instrum. Meth. Phys. Res. B 307 281 (2013)
  137. De Vido M et al Opt. Mater. Express. 7 3303 (2017)
  138. https://www.phi.com/news/introducing-the-gas-cluster-ion-beam-ion-gun.html
  139. IONOPTIKA. GCIB 40, https://www.ionoptika.com/products/ion-beams/gas-cluster-ion-beams/gcib-40
  140. Winograd N Annu. Rev. Anal. Chem. 11 29 (2018)
  141. Zeng X M et al Acta Phys. Sin. 69 093601 (2020)
  142. Kireev D S et al Vestn. Ryazanskogo Gos. Radiotekh. Univ. (66-2) 40 (2018)
  143. SRIM, http://www.srim.org
  144. Matsuo J et al Nucl. Instrum. Meth. Phys. Res. B 121 459 (1997)
  145. Yamamura Y, Tawara H At. Data Nucl. Data Tables 62 149 (1996)
  146. Toyoda N et al Mater. Chem. Phys. 54 262 (1998)
  147. Chernysh V S et al Surf. Coat. Technol. 388 125608 (2020)
  148. Yamada I et al Nucl. Instrum. Meth. Phys. Res. B 164 944 (2000)
  149. Insepov Z, Yamada I, Sosnowski M Mater. Chem. Phys. 54 234 (1998)
  150. Kargin N I Nauch. Vizualizatsiya 9 (3) 28 (2017)
  151. Chainikova A S et al Trudy Vseross. Nauchno-Issled. Inst. Aviatsionnykh Mater. (11) 4 (2015)
  152. Ieshkin A et al Surf. Topogr. Metrol. Prop. 7 025016 (2019)
  153. Chirkin M V, Molchanov A V, Serebryakov A E Proc. Of The 5th Intern. Conf. On Optical Measurement Techniques For Structures And Systems (Eds J Dirckx, J Buytaert) (Maastricht: Shaker Publ. BV, 2013) p. 93
  154. Akizuki M et al Nucl. Instrum. Meth. Phys. Res. B 99 229 (1995)
  155. Henkes P R W, Krevet B J. Vac. Sci. Technol. A 13 2133 (1995)
  156. Yamada I et al Mater. Sci. Eng. R 34 231 (2001)
  157. Ieshkin A E et al Surf. Sci. 700 121637 (2020)
  158. Teo E J et al Nanoscale 6 3243 (2014)
  159. Teo E J et al Appl. Phys. A 117 719 (2014)
  160. Nikolaev I V et al Tech. Phys. Lett. 47 305 (2021); Nikolaev I V et al Pis’ma Zh. Tekh. Fiz. 47 (6) 44 (2021)
  161. Yin X et al Proc. SPIE 10697 106974R (2018)
  162. Li L et al Results Phys. 19 103356 (2020)
  163. Toyoda N et al Nucl. Instrum. Meth. Phys. Res. B 148 639 (1999)
  164. Ieshkin A E et al Moscow Univ. Phys. Bull. 71 87 (2016); Ieshkin A E et al Vestn. Mosk. Univ. Fiz. Astron. 1 72 (2016)
  165. Ieshkin A E et al Tech. Phys. Lett. 43 50 (2017); Ieshkin A E et al Pis’ma Zh. Tekh. Fiz. 43 (2) 18 (2017)
  166. Mashita T, Toyoda N, Yamada I Jpn. J. Appl. Phys. 49 06GH09 (2010)
  167. Korobeishchikov N G, Nikolaev I V, Roenko M A Tech. Phys. Lett. 45 274 (2019); Korobeishchikov N G, Nikolaev I V, Roenko M A Pis’ma Zh. Tekh. Fiz. 45 (6) 30 (2019)
  168. Manenkov A A Opt. Eng. 53 010901 (2014)
  169. Korobeishchikov N G et al Surf. Interfaces 27 101520 (2021)
  170. Toyoda N, Yamada I Nucl. Instrum. Meth. Phys. Res. B 273 11 (2012)
  171. Takaoka G H et al Nucl. Instrum. Meth. Phys. Res. B 232 206 (2005)
  172. Aoki T, Matsuo J, Takaoka G Nucl. Instrum. Meth. Phys. Res. B 202 278 (2003)
  173. Nakayama Y et al Nucl. Instrum. Meth. Phys. Res. B 241 618 (2005)
  174. Seki T, Aoki T, Matsuo J AIP Conf. Proc. 1066 423 (2008)
  175. Kyoung Y K et al Surf. Interface Anal. 45 150 (2013)
  176. Shemukhin A A et al Nucl. Instrum. Meth. Phys. Res. B 354 274 (2015)
  177. Isogai H et al Nucl. Instrum. Meth. Phys. Res. B 257 683 (2007)
  178. Shao L et al Appl. Phys. Lett. 102 101604 (2013)
  179. Zanaveskin M L et al Crystallogr. Rep. 53 701 (2008); Zanaveskin M L et al Kristallographiya 53 740 (2008)
  180. Toyoda N MRS Adv. 1 357 (2016)
  181. Aoki T, Matsuo J Nucl. Instrum. Meth. Phys. Res. B 261 639 (2007)
  182. Kakuta S et al Nucl. Instrum. Meth. Phys. Res. B 257 677 (2007)
  183. Chu W K et al Appl. Phys. Lett. 72 246 (1998)
  184. Fathy D et al Mater. Lett. 44 248 (2000)
  185. Bourelle E et al Nucl. Instrum. Meth. Phys. Res. B 241 622 (2005)
  186. Suzuki A et al Nucl. Instrum. Meth. Phys. Res. B 257 649 (2007)
  187. Kakekhani A, Ismail-Beigi S, Altman E I Surf. Sci. 650 302 (2016)
  188. Wang C et al Nature 562 101 (2018)
  189. Skryleva E A et al Surf. Interfaces 26 101428 (2021)
  190. Siew S Y et al Opt. Express 26 4421 (2018)
  191. Zorina M V et al Tech. Phys. Lett. 42 844 (2016); Zorina M V et al Pis’ma Zh. Tekh. Fiz. 42 (16) 34 (2016)
  192. Ieshkin A E et al Nucl. Instrum. Meth. Phys. Res. B 460 165 (2019)
  193. Svyakhovskiy S E, Maydykovsky A I, Murzina T V J. Appl. Phys. 112 013106 (2012)
  194. Ieshkin A E, Svyakhovskiy S E, Chernysh V S Vacuum 148 272 (2018)
  195. Toyoda N et al Jpn. J. Appl. Phys. 49 06GH13 (2010)
  196. Toyoda N et al J. Appl. Phys. 105 07C127 (2009)
  197. Nagato K et al IEEE Trans. Magn. 46 2504 (2010)
  198. Wu A T, Swenson D R, Insepov Z Phys. Rev. ST Accel. Beams 13 093504 (2010)
  199. Insepov Z et al AIP Conf. Proc. 1099 46 (2009)
  200. Swenson D R, Degenkolb E, Insepov Z Physica C 441 75 (2006)
  201. Chernysh V S et al J. Instrum. 16 T02007 (2021)
  202. Pelenovich V et al Acta Phys. Sin. 70 053601 (2021)
  203. Nikolaev I V et al Tech. Phys. Lett. 47 301 (2021); Nikolaev I V et al Pis’ma Zh. Tekh. Fiz. 47 (6) 44 (2021)
  204. Fenner D B et al Proc. SPIE 4468 17 (2001)
  205. Nishiyama A et al AIP Conf. Proc. 475 421 (1999)
  206. Bakun A D et al Appl. Surf. Sci. 523 146384 (2020)
  207. Aoki T et al Nucl. Instrum. Meth. Phys. Res. B 206 861 (2003)
  208. Ieshkin A E et al Nucl. Instrum. Meth. Phys. Res. B 421 27 (2018)
  209. Huang, Q et al Nat. Commun. 10 2437 (2019)
  210. Toyoda N, Mashita T, Yamada I Nucl. Instrum. Meth. Phys. Res. B 232 212 (2005)
  211. Toyoda N et al Appl. Phys. Rev. 6 020901 (2019)
  212. Norris S A, Aziz M J Appl. Phys. Rev. 6 011311 (2019)
  213. Cuerno R, Kim J S J. Appl. Phys. 128 180902 (2020)
  214. Maciazek D, Kanski M, Postawa Z Anal. Chem. 92 7349 (2020)
  215. Sumie K, Toyoda N, Yamada I Nucl. Instrum. Meth. Phys. Res. B 307 290 (2013)
  216. Lozano O et al AIP Adv. 3 062107 (2013)
  217. Tilakaratne B P, Chen Q Y, Chu W K Materials 10 1056 (2017)
  218. Zeng X et al Beilstein J. Nanotechnol. 11 383 (2020)
  219. Kireev D S, Ieshkin A E, Shemukhin A A Tech. Phys. Lett. 46 409 (2020); Kireev D S, Ieshkin A E, Shemukhin A A Pis’ma Zh. Tekh. Fiz. 46 (9) 3 (2020)
  220. Ieshkin A et al Mater. Lett. 272 127829 (2020)
  221. Saleem I et al Nucl. Instrum. Meth. Phys. Res. B 380 20 (2016)
  222. Saleem I, Chu W K Sens. Biosensing Res. 11 14 (2016)
  223. Saleem I, Widger W, Chu W K Appl. Surf. Sci. 411 205 (2017)
  224. Radny T, Gnaser H Nanoscale Res. Lett. 9 403 (2014)
  225. Sanatinia R et al Nanotechnol. 26 415304 (2015)
  226. Murdoch B J et al Appl. Phys. Lett. 111 081603 (2017)
  227. Takagi H, Kurashima Y, Suga T ECS Trans. 75 (9) 3 (2016)
  228. Toyoda N et al Jpn. J. Appl. Phys. 02 (2018)
  229. Ikeda S, Sasaki T, Toyoda N 2017 5th Intern. Workshop On Low Temperature Bonding For 3D Integration, LTB-3D, 16 - 18 May 2017 (Piscataway, NJ: IEEE, 2017) p. 66
  230. Toyoda N et al ECS Trans. 75 9 (2016)
  231. Shiau D K Surf. Coatings Technol. 365 173 (2019)
  232. Stewart C A C et al Appl. Surf. Sci. 456 701 (2018)
  233. Yamada I et al Curr. Opin. Solid State Mater. Sci. 19 12 (2015)
  234. https://www.exogenesis.us/biotechnology/publications
  235. Khoury J et al Nucl. Instrum. Meth. Phys. Res. B 307 630 (2013)
  236. Kirkpatrick S et al 2016 IEEE 16th Intern. Conf. On Nanotechnology, IEEE-NANO, 22 - 25 Aug. 2016 (Piscataway, NJ: IEEE, 2016) p. 710
  237. Yamada I, Khoury J MRS Proc. 1354 301 (2011)
  238. Cleveland C L, Landman U Science 257 355 (1992)
  239. Insepov Z, Yamada I Nucl. Instrum. Meth. Phys. Res. B 112 16 (1996)
  240. Ieshkin A E et al Surf. Coatings Technol. 404 126505 (2020)
  241. Toyoda N, Yamada I Phys. Procedia 66 556 (2015)
  242. Takaoka G H et al Surf. Coatings Technol. 206 869 (2011)
  243. Ryuto H et al Rev. Sci. Instrum. 85 02C301 (2014)
  244. Toyoda N et al Mater. Chem. Phys. 54 106 (1998)
  245. Ogawa A, Toyoda N, Yamada I Surf. Coatings Technol. 306 187 (2016)
  246. Yamaguchi A et al Jpn. J. Appl. Phys. 52 05EB05 (2013)
  247. Seki T et al Jpn. J. Appl. Phys. 55 06HB01 (2016)
  248. Seki T et al Jpn. J. Appl. Phys. 56 06HB02 (2017)
  249. Seki T et al Appl. Phys. Lett. 110 182105 (2017)
  250. Toyoda N, Ogawa A J. Phys. D 50 184003 (2017)
  251. Toyoda N, Uematsu K Jpn. J. Appl. Phys. 58 SEEA01 (2019)
  252. Borland J et al Electrochemical Society Proceedings Vol. 2004-07 (Eds D Harame et al) (Pennington: The Electrochemical Society, Inc., 2004) p. 769
  253. Hautala J et al AIP Conf. Proc. 866 174 (2006)
  254. Maciazek D, Postawa Z Acta Phys. Pol. A 136 260 (2019)
  255. Benninghoven A, Rüdenauer F G, Werner H W Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications, And Trends (Chemical Analysis) Vol. 86 (New York: J. Wiley, 1987)
  256. Tolstoguzov A B "Perspektivnye napravleniya razvitiya metoda vtorichno-ionnoi mass-spektrometrii (Promising directionsthe development of the secondary-ion mass spectrometry)" Obzory Po Elektronnoi Tekhnike (Reviews Of Electronic Technology, Ser. Technology, Production Management, And Equipment, No. 5 (1604)) (Moscow: TsNII Elektronika, 1604) p. 67
  257. Cherepin V T Ionnyi Mikrozondovyi Analiz (Ion Microprobe Analysis) (Kiev: Naukova Dumka, 1992)
  258. Tolstogouzov A B et al Instrum. Exp. Tech. 58 1 (2015); Tolstogouzov A B et al Prib. Tekh. Eksp. (1) 5 (2015)
  259. Mahoney C M (Ed.) Cluster Secondary Ion Mass Spectrometry: Principles And Applications (Hoboken, NJ: John Wiley and Sons, 2013)
  260. Ninomiya S et al Nucl. Instrum. Meth. Phys. Res. B 256 493 (2007)
  261. Rzeznik L et al J. Phys. Chem. C 112 521 (2008)
  262. Cristaudo V et al Appl. Surf. Sci. 536 147716 (2021)
  263. Lee J L S et al Anal. Chem. 82 98 (2010)
  264. Mochiji K et al Rapid Commun. Mass Spectrom. 23 648 (2009)
  265. Delcorte A, Garrison B J, Hamraoui K Surf. Interface Anal. 43 16 (2011)
  266. Mochiji K J. Anal. Bioanal. Tech. 001 (2014)
  267. Rabbani S et al Anal. Chem. 83 3793 (2011)
  268. Benguerba M Nucl. Instrum. Meth. Phys. Res. B 420 27 (2018)
  269. Williams P, Mahoney C M Cluster Secondary Ion Mass Spectrometry: Principles And Applications (Ed. C M Mahoney) (Hoboken, NJ: John Wiley and Sons, 2013)
  270. Mahoney C M et al Cluster Secondary Ion Mass Spectrometry: Principles And Applications (Ed. C M Mahoney) (Hoboken, NJ: John Wiley and Sons, 2013) p. 117
  271. Gillen G, Bennett J Cluster Secondary Ion Mass Spectrometry: Principles And Applications (Ed. C M Mahoney) (Hoboken, NJ: John Wiley and Sons, 2013) p. 247
  272. Rading D et al Surf. Interface Anal. 45 171 (2013)
  273. Depth profile analysis of organic materials by GCIB-TOF-SIMS, https://www.toray-research.co.jp/en/technicaldata/pdf/TechData_P00905E.pdf
  274. Noda et al J. Vac. Sci. Technol. B 38 034003 (2020)
  275. Delcorte A, Poleunis C J. Phys. Chem. C 123 19704 (2019)
  276. Delmez V et al J. Phys. Chem. Lett. 12 952 (2021)
  277. Mouhib T et al Surf. Interface Anal. 45 46 (2013)
  278. Rabbani S S Anal. Chem. 87 2367 (2015)
  279. Wucher A, Tian H, Winograd N Rapid Commun. Mass Spectrom. 28 396 (2014)
  280. Razo I B Rapid Commun. Mass Spectrom. 29 1851 (2015)
  281. Tian H, Wucher A, Winograd N J. Am. Soc. Mass Spectrom. 27 285 (2016)
  282. Lee S J et al Appl. Surf. Sci. 572 151467 (2022)
  283. Tolstogouzov A B "Combined source of mixed-composition gas cluster ion beam" Patent ZL 2018,1,1165407,4 (2018)
  284. Wucher A, Fisher G L, Mahoney C M Cluster Secondary Ion Mass Spectrometry: Principles And Applications (Ed. C M Mahoney) (Hoboken, NJ: John Wiley and Sons, 2013) p. 207
  285. Vickerman J, Winograd N Cluster Secondary Ion Mass Spectrometry: Principles And Applications (Ed. C M Mahoney) (Hoboken, NJ: John Wiley and Sons, 2013) p. 269
  286. IONOPTIKA. J105 SIMS, https://ionoptika.com/products/j105-sims/
  287. Fletcher J S et al Anal. Chem. 80 9058 (2008)
  288. Hill R et al Surf. Interface Anal. 43 506 (2011)
  289. Nefedov V I Rentgenoelektronnaya Spektroskopiya Khimicheskikh Soedinenii (X-ray Electron Spectroscopy Of Chemical Compounds) (Moscow: Khimiya, 1984)
  290. Friedbacher H, Bubert G (Eds) Surface And Thin Film Analysis: A Compendium Of Principles, Instrumentation, And Applications (Weinheim: Wiley-VCH, 2011)
  291. Stevie F A, Donley C L J. Vac. Sci. Technol. A 38 063204 (2020)
  292. Toray Research Center. XPS analysis using the GCIB etching, https://www.toray-research.co.jp/en/technicaldata/pdf/TechData_P01179E.pdf
  293. Miisho A, Inaba M J. Surf. Anal. 24 47 (2017)
  294. Romanyuk O et al Appl. Surf. Sci. 514 145903 (2020)
  295. Finšgar M Corros. Sci. 169 108632 (2020)
  296. Theodosiou A et al Appl. Surf. Sci. 506 144764 (2020)
  297. SPECSGROUP. EnviroESCA, https://www.specs-group.com/nc/enviro/products/detail/enviroesca/
  298. Insepov Z et al Phys. Rev. B 61 8744 (2000)
  299. Kinslow R (Ed.) High-Velocity Impact Phenomena (New York: Academic Press, 1970)
  300. Toyoda N 2016 IEEE 16th Intern. Conf. On Nanotechnology, IEEE-NANO, 22 - 25 Aug. 2016 (Piscataway, NJ: IEEE, 2016) p. 381
  301. Onorati E et al Thin Solid Films 625 35 (2017)
  302. Mochiji K et al Rapid Commun. Mass Spectrom. 28 2141 (2014)
  303. Poleunis C, Cristaudo V, Delcorte A J. Am. Soc. Mass Spectrom. 29 4 (2018)
  304. Chundak M et al Appl. Surf. Sci. 533 147473 (2020)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions