Issues

 / 

2019

 / 

September

  

Reviews of topical problems


Topological defects in active liquid crystals


Departments of Biomedical Engineering, Chemistry and Mathematics, Pennsylvania State University, 205 Hallowell Building, University Park, PA, 16802-4400, USA

A wide class of out-of-equilibrium systems comprised of interacting self-propelled agents is termed active matter. The most relevant examples include suspensions of microscopic swimming organisms (bacteria, sperm cells, or unicellular algae), synthetic catalytic nanomotors, colloidal self-propelled Janus particles, and even macroscopic bird flocks, fish schools, or human crowds. The simplest and most studied realization of active matter is a suspension of microscopic swimmers, such as motile microorganisms or self-phoretic colloids. A liquid crystal, a highly-structured anisotropic environment with local molecular ordering, "doped" by a small amount of active component yields an interesting class of non-equilibrium materials with novel optical and mechanical properties. Singularities of local molecular orientation, or topological defects, play an important role in the spatiotemporal organization of active liquid crystals. This study surveys the most recent experimental and theoretical advances in the field of active liquid crystals and highlights connections with other nonequilibrium physical and biological systems.

Fulltext is available at IOP
Keywords: microswimmers, liquid crystals, topological defects, active matter, collective motion
PACS: 42.70.Df, 47.20.−k, 47.63.Gd (all)
DOI: 10.3367/UFNe.2018.10.038433
URL: https://ufn.ru/en/articles/2019/9/c/
Citation: Aranson I S "Topological defects in active liquid crystals" Phys. Usp. 62 892–909 (2019)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 7th, July 2018, revised: 22nd, September 2018, 4th, October 2018

Оригинал: Арансон И С «Топологические дефекты в активных жидких кристаллах» УФН 189 955–975 (2019); DOI: 10.3367/UFNr.2018.10.038433

References (140) Cited by (4) Similar articles (20) ↓

  1. S.Ya. Vetrov, I.V. Timofeev, V.F. Shabanov “Localized modes in chiral photonic structures63 33–56 (2020)
  2. M.Yu. Kagan, A.V. Turlapov “BCS—BEC crossover, collective excitations, and hydrodynamics of superfluid quantum fluids and gases62 215–248 (2019)
  3. V.V. Brazhkin “Ultrahard nanomaterials: myths and reality63 523–544 (2020)
  4. S.M. Arakelyan “Optical bistability, multistability, and instabilities in liquid crystals30 1041–1064 (1987)
  5. A.M. Fridman “Prediction and discovery of extremely strong hydrodynamic instabilities due to a velocity jump: theory and experiments51 213–229 (2008)
  6. G.R. Ivanitskii, A.B. Medvinskii, M.A. Tsyganov “From disorder to order as applied to the movement of micro-organisms34 (4) 289–316 (1991)
  7. A.S. Monin “Hydrodynamic instability29 843–868 (1986)
  8. G.R. Ivanitskii, A.B. Medvinskii, M.A. Tsyganov “From the dynamics of population autowaves generated by living cells to neuroinformatics37 961–989 (1994)
  9. E.Z. Kuchinskii, I.A. Nekrasov, M.V. Sadovskii “Generalized dynamical mean-field theory in the physics of strongly correlated systems55 325–355 (2012)
  10. A.V. Gurevich, K.P. Zybin “Runaway breakdown and electric discharges in thunderstorms44 1119–1140 (2001)
  11. S.K. Turitsyn, N.N. Rozanov et alDissipative solitons in fiber lasers59 642–668 (2016)
  12. P.B. Ivanov, E.V. Mikheeva et alInterferometric observations of supermassive black holes in the millimeter wave band62 423–449 (2019)
  13. L.P. Babich “Thunderous neutrons62 976–999 (2019)
  14. A.I. Osipov, A.V. Uvarov “Stability problems in a nonequilibrium gas39 597–608 (1996)
  15. E.D. Eidel’man “Excitation of an electric instability by heating38 1231–1246 (1995)
  16. N.M. Kuznetsov “Stability of shock waves32 993–1012 (1989)
  17. L.P. Babich “Relativistic runaway electron avalanche63 1188–1218 (2020)
  18. M.Ya. Marov, I.I. Shevchenko “Exoplanets: nature and models63 837–871 (2020)
  19. A.I. Savvatimskii, S.V. Onufriev “Investigation of the physical properties of carbon under high temperatures (experimental studies)63 1015–1036 (2020)
  20. A.G. Merzhanov, É.N. Rumanov “Nonlinear effects in macroscopic kinetics30 293–316 (1987)

The list is formed automatically.

© 1918–2022 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions