Issues

 / 

2019

 / 

September

  

Reviews of topical problems


Topological defects in active liquid crystals


Departments of Biomedical Engineering, Chemistry and Mathematics, Pennsylvania State University, 205 Hallowell Building, University Park, PA, 16802-4400, USA

A wide class of out-of-equilibrium systems comprised of interacting self-propelled agents is termed active matter. The most relevant examples include suspensions of microscopic swimming organisms (bacteria, sperm cells, or unicellular algae), synthetic catalytic nanomotors, colloidal self-propelled Janus particles, and even macroscopic bird flocks, fish schools, or human crowds. The simplest and most studied realization of active matter is a suspension of microscopic swimmers, such as motile microorganisms or self-phoretic colloids. A liquid crystal, a highly-structured anisotropic environment with local molecular ordering, "doped" by a small amount of active component yields an interesting class of non-equilibrium materials with novel optical and mechanical properties. Singularities of local molecular orientation, or topological defects, play an important role in the spatiotemporal organization of active liquid crystals. This study surveys the most recent experimental and theoretical advances in the field of active liquid crystals and highlights connections with other nonequilibrium physical and biological systems.

Fulltext pdf (1.5 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2018.10.038433
Keywords: microswimmers, liquid crystals, topological defects, active matter, collective motion
PACS: 42.70.Df, 47.20.−k, 47.63.Gd (all)
DOI: 10.3367/UFNe.2018.10.038433
URL: https://ufn.ru/en/articles/2019/9/c/
000504893200003
2-s2.0-85080942488
2019PhyU...62..892A
Citation: Aranson I S "Topological defects in active liquid crystals" Phys. Usp. 62 892–909 (2019)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 7th, July 2018, revised: 22nd, September 2018, 4th, October 2018

Оригинал: Арансон И С «Топологические дефекты в активных жидких кристаллах» УФН 189 955–975 (2019); DOI: 10.3367/UFNr.2018.10.038433

References (140) ↓ Cited by (14) Similar articles (20)

  1. Aranson I S Usp. Fiz. Nauk 183 87 (2013); Aranson I S Phys. Usp. 56 79 (2013)
  2. Marchetti M C et al Rev. Mod. Phys. 85 1143 (2013)
  3. Vicsek T, Zafeiris A Phys. Rep. 517 71 (2012)
  4. Lavrentovich O D Current Opin. Colloid Interface Sci. 21 97 (2016)
  5. Dombrowski C et al Phys. Rev. Lett. 93 098103 (2004)
  6. Sokolov A, Aranson I S, Kessler J O, Goldstein R E Phys. Rev. Lett. 98 158102 (2007)
  7. Goldstein R E Annu. Rev. Fluid Mech. 47 343 (2015)
  8. Kantsler V et al ELife 3 e02403 (2014)
  9. Surrey T et al Science 292 1167 (2001)
  10. Schaller V et al Nature 467 73 (2010)
  11. Sumino Y et al Nature 483 448 (2012)
  12. Paxton W F et al J. Am. Chem. Soc. 126 13424 (2004)
  13. Palacci J et al Science 339 936 (2013)
  14. Theurkauff I et al Phys. Rev. Lett. 108 268303 (2012)
  15. Buhl J et al Science 312 1402 (2006)
  16. Cavagna A et al Proc. Natl. Acad. Sci. USA 107 11865 (2010)
  17. Ward A J et al Proc. Natl. Acad. Sci. USA 105 6948 (2008)
  18. Karamouzas I, Skinner B, Guy S J Phys. Rev. Lett. 113 238701 (2014)
  19. Wensink H H et al Proc. Natl. Acad. Sci. USA 109 14308 (2012)
  20. Sokolov A, Aranson I S Phys. Rev. Lett. 109 248109 (2012)
  21. Saintillan D, Shelley M J Phys. Rev. Lett. 100 178103 (2008)
  22. Aranson I S et al Phys. Rev. E 75 040901(R) (2007)
  23. Saintillan D, Shelley M J Compt. Rend. Phys. 14 497 (2013)
  24. Sokolov A, Aranson I S Phys. Rev. Lett. 103 148101 (2009)
  25. López H M et al Phys. Rev. Lett. 115 028301 (2015)
  26. Palacci J et al Sci. Adv. 1400214 (2015)
  27. Ren L et al ACS Nano 11 10591 (2017)
  28. Löwen H Phys. Rep. 237 249 (1994)
  29. Berg H C, Brown D A Nature 239 500 (1972)
  30. Takagi D et al Phys. Rev. Lett. 110 038301 (2013)
  31. Weber C A et al Proc. Natl. Acad. Sci. USA 112 10703 (2015)
  32. Sanchez T et al Nature 491 431 (2012)
  33. Zhou S, Sokolov A, Lavrentovich O D, Aranson I S Proc. Natl. Acad. Sci. USA 111 1265 (2014)
  34. Zimmermann N et al Soft Matter 11 1547 (2015)
  35. Schimansky-Geier L et al Phys. Lett. A 207 140 (1995)
  36. Schweitzer F, Ebeling W, Tilch B Phys. Rev. Lett. 80 5044 (1998)
  37. Romanczuk P et al Eur. Phys. J 202 1 (2012)
  38. Cates M E, Tailleur J Annu. Rev. Condens. Matter Phys. 6 219 (2015)
  39. Solon A P et al Phys. Rev. Lett. 114 198301 (2015)
  40. Nardini C et al Phys. Rev. X 7 021007 (2017)
  41. Aranson I S, Tsimring L S Rev. Mod. Phys. 78 641 (2006)
  42. Aranson I S et al Phys. Rev. Lett. 84 3306 (2000)
  43. Clerc M G et al Nature Phys. 4 249 (2008)
  44. Peruani F et al Phys. Rev. Lett. 108 098102 (2012)
  45. Zhang H P et al Proc. Natl. Acad. Sci. USA 107 13626 (2010)
  46. Narayan V, Ramaswamy S, Menon N Science 317 105 (2007)
  47. Aranson I S, Volfson D, Tsimring L S Phys. Rev. E 75 051301 (2007)
  48. Kudrolli A et al Phys. Rev. Lett. 100 058001 (2008)
  49. Pawar A B, Kretzschmar I Macromol. Rapid Commun. 31 150 (2010)
  50. Bianchi E, Blaak R, Likos C N Phys. Chem. Chem. Phys. 13 6397 (2011)
  51. de Gennes P G, Prost J The Physics Of Liquid Crystals (Intern. Ser. of Monographs on Physics) Vol. 83 (Oxford: Oxford Univ. Press, 1995)
  52. Kléman M, Lavrentovich O D Soft Matter Physics: An Introduction (New York: Springer, 2007)
  53. Kim Y-K, Shiyanovskii S V, Lavrentovich O D J. Phys. Condens. Matter 25 404202 (2013)
  54. Mushenheim P C et al Soft Matter 10 88 (2014)
  55. Nazarenko V G et al Phys. Rev. Lett. 105 017801 (2010)
  56. Zhou S at al. New J. Phys. 19 055006 (2017)
  57. Mushenheim P C et al Soft Matter 11 6821 (2015)
  58. Mermin N D Rev. Mod. Phys. 51 591 (1979)
  59. Pismen L M Vortices In Nonlinear Fields: From Liquid Crystals To Superfluids, From Non-equilibrium Patterns To Cosmic Strings (Intern. Ser. of Monographs on Physics) Vol. 100 (New York: Oxford Univ. Press, 1999)
  60. Abrikosov A A, Gorkov L P, Dzyaloshinski I E Methods Of Quantum Field Theory In Statistical Physics (North Chelmsford, MA: Dover Publ., 2012)
  61. Genkin M M, Sokolov A, Lavrentovich O D, Aranson I S Phys. Rev. X 7 011029 (2017)
  62. Giomi L et al Phys. Rev. Lett. 110 228101 (2013)
  63. Pismen L M Phys. Rev. E 88 050502(R) (2013)
  64. Keber F C et al Science 345 1135 (2014)
  65. Thampi S P, Golestanian R, Yeomans J M Europhys. Lett. 105 18001 (2014)
  66. Bodenschatz E, Pesch W, Kramer L Physica D 32 135 (1988)
  67. Ellis P W et al Nature Phys. 14 85 (2018)
  68. Needleman D, Dogic Z Nature Rev. Mater. 2 17048 (2017)
  69. DeCamp S J et al Nature Mater. 14 1110 (2015)
  70. Kamien R D Rev. Mod. Phys. 74 953 (2002)
  71. Nelson D R Nano Lett. 2 1125 (2002)
  72. Pairam E et al Proc. Natl. Acad. Sci. USA 110 9295 (2013)
  73. Sokolov A, Zhou S, Lavrentovich O D, Aranson I S Phys. Rev. E 91 013009 (2015)
  74. Kumar A et al Mol. Cryst. Liquid Cryst. 574 33 (2013)
  75. Trivedi R R et al Soft Matter 11 8404 (2015)
  76. Genkin M M, Sokolov A, Aranson I S New J. Phys. 20 043027 (2018)
  77. Kawaguchi K, Kageyama R, Sano M Nature 545 327 (2017)
  78. Guo Y et al Adv. Mater. 28 2353 (2016)
  79. Peng C et al Science 354 882 (2016)
  80. Landau L D, Lifshitz E M Fluid Mechanics 2nd Ed. (Amsterdam: Elsevier, 2013)
  81. Köhler S, Schaller V, Bausch A R Nature Mater. 10 462 (2011)
  82. Saw T B et al Nature 544 212 (2017)
  83. Malinverno C et al Nature Mater. 16 587 (2017)
  84. Harvey C W, Alber M, Tsimring L S, Aranson I S New J. Phys. 15 035029 (2013)
  85. Wu Y et al Proc. Natl. Acad. Sci. USA 106 1222 (2009)
  86. Volfson D et al Proc. Natl. Acad. Sci. USA 105 15346 (2008)
  87. Ngo S et al Phys. Rev. Lett. 113 038302 (2014)
  88. Gao T et al Phys. Rev. E 92 062709 (2015)
  89. Ramaswamy S, Simha R A, Toner J Europhys. Lett. 62 196 (2003)
  90. Baskaran A, Marchetti M C Phys. Rev. E 77 011920 (2008)
  91. Bertin E et al New J. Phys. 15 085032 (2013)
  92. Beris A N, Edwards B J Thermodynamics Of Flowing Systems: With Internal Microstructure (Oxford Engineering Science Series) Vol. 36 (New York: Oxford Univ. Press, 1994)
  93. Thampi S P, Golestanian R, Yeomans J M Phys. Rev. Lett. 111 118101 (2013)
  94. Thampi S P, Golestanian R, Yeomans J M Phys. Rev. E 90 062307 (2014)
  95. Blow M L, Thampi S P, Yeomans J M Phys. Rev. Lett. 113 248303 (2014)
  96. Giomi L Phys. Rev. X 5 031003 (2015)
  97. Vicsek T et al Phys. Rev. Lett. 75 1226 (1995)
  98. Chaté H, Ginelli F, Montagne R Phys. Rev. Lett. 96 180602 (2006)
  99. Aranson I S, Tsimring L S Phys. Rev. E 71 050901(R) (2005)
  100. Peshkov A et al Phys. Rev. Lett. 109 268701 (2012)
  101. Sokolov A, Rubio L D, Brady J F, Aranson I S Nature Commun. 9 1322 (2018)
  102. Thampi S P, Golestanian R, Yeomans J M Phil. Trans. R. Soc. A 372 20130366 (2014)
  103. Doostmohammadi A et al Nature Commun. 7 10557 (2016)
  104. Hatwalne Y et al Phys. Rev. Lett. 92 118101 (2004)
  105. Ramaswamy S Annu. Rev. Condens. Matter Phys. 1 323 (2010)
  106. Hernandez-Ortiz J P, Stoltz C G, Graham M D Phys. Rev. Lett. 95 204501 (2005)
  107. Guillamat P et al Phys. Rev. E 94 060602(R) (2016)
  108. Yan W, Brady J F J. Fluid Mech. 785 R1 (2015)
  109. Putzig E et al Soft Matter 12 3854 (2016)
  110. Oza A U, Dunkel J New J. Phys. 18 093006 (2016)
  111. Aranson I S, Kramer L Rev. Mod. Phys. 74 99 (2002)
  112. Zhang R et al Nature Commun. 7 13483 (2016)
  113. Tasinkevych M et al Soft Matter 10 2047 (2014)
  114. Kim S, Karrila S J Microhydrodynamics: Principles And Selected Applications (North Chelmsford, MA: Dover Publ., 2013)
  115. Krieger M S, Spagnolie S E, Powers T Soft Matter 11 9115 (2015)
  116. Smith C J, Denniston C J. Appl. Phys. 101 014305 (2007)
  117. Brochard F, de Gennes P G J. Physique 31 691 (1970)
  118. Tirado M M, de la Torre J G J. Chem. Phys. 73 1986 (1980)
  119. Zhou S et al Soft Matter 10 6571 (2014)
  120. van Zon J, MacKintosh F C Phys. Rev. Lett. 93 038001 (2004)
  121. Kohlstedt K et al Phys. Rev. Lett. 95 068001 (2005)
  122. Landau L D, Lifshitz E M, Pitaevskii L Statistical Physics Vol. 1 (Oxford: Pergamon Press, 1980)
  123. Kaznacheev A V, Bogdanov M M, Taraskin S A Zh. Eksp. Teor. Fiz. 122 68 (2002); Kaznacheev A V, Bogdanov M M, Taraskin S A JETP 95 57 (2002)
  124. Hiemstra T, Van Riemsdijk W H, Bolt G H J. Colloid Interface Sci. 133 91 (1989)
  125. Behrens S H, Grier D G J. Chem. Phys. 115 6716 (2001)
  126. Sapozhnikov M V, Tolmachev Y V, Aranson I S, Kwok W-K Phys. Rev. Lett. 90 114301 (2003)
  127. Israelachvili J N Intermolecular And Surface Forces (Burlington, MA: Academic Press, 2011)
  128. Bukusoglu E et al Annu. Rev. Chem. Biomol. Eng. 7 163 (2016)
  129. Viney C, Huber A E, Verdugo P Macromolecules 26 852 (1993)
  130. Smalyukh I I et al Phys. Rev. Lett. 96 177801 (2006)
  131. Dogic Z, Fraden S Current Opin. Colloid Interface Sci. 11 47 (2006)
  132. Figueroa-Morales N, Dominguez-Rubio L, Ott T L, Aranson I S Sci. Rep. 9 9713 (2019)
  133. Ebbens S J, Howse J R Soft Matter 6 726 (2010)
  134. Wang W et al ACS Nano 6 6122 (2012)
  135. Wang W et al Angew. Chem. Int. Ed. 53 3201 (2014)
  136. Lavrentovich O D, Lazo I, Pishnyak O P Nature 467 947 (2010)
  137. Hernàndez-Navarro S et al Angew. Chem. 126 10872 (2014)
  138. Kléman M J. Physique 38 1511 (1977)
  139. Guo W, Herminghaus S, Bahr C Langmuir 24 8174 (2008)
  140. Guillamat P, Ignés-Mullol J, Sagués F Proc. Natl. Acad. Sci. USA 113 5498 (2016)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions