Issues

 / 

1987

 / 

April

  

Reviews of topical problems


Nonlinear effects in macroscopic kinetics

Macroscopic kinetics describes relaxation in terms of macroscopic states, i.e., the distributions of density, temperature, and so on. Two types of system are examined in this review, namely, (1) closed systems (or systems interacting exclusively with a thermostat) and (2) flow systems in which the nonequilibrium state is maintained by an external agency (source of supply or pump). In both cases, states are established that do not depend (in a particular range) on the initial conditions. These are the attractor states. Spatially homogeneous states (kinetic phases) are discussed for flow systems, together with transitions between them that are the analogs of the motion of interphase boundaries. In closed systems, the establishment of equilibrium can be preceded by the appearance of other attractors in the form of intermediate asymptotic behavior. A comparison is made between similar states in different processes (chemical reactions, viscous flows, absorption of light, and so on). Stability conditions are discussed.

PACS: 47.35.Fg, 47.70.Pq, 82.33.Vx, 47.20.−k (all)
DOI: 10.1070/PU1987v030n04ABEH002831
URL: https://ufn.ru/en/articles/1987/4/a/
Citation: Merzhanov A G, Rumanov É N "Nonlinear effects in macroscopic kinetics" Sov. Phys. Usp. 30 293–316 (1987)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Мержанов А Г, Руманов Э Н «Нелинейные эффекты в макроскопической кинетике» УФН 151 553–593 (1987); DOI: 10.3367/UFNr.0151.198704a.0553

References (173) Cited by (50) Similar articles (20)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions