Issues

 / 

2024

 / 

May

  

Reviews of topical problems


Wearable noninvasive glucose sensors based on graphene and other carbon materials

  a, b,   a
a Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, prosp. Lavrent'eva 13, Novosibirsk, 630090, Russian Federation
b Novosibirsk State Technical University, pr. K. Marksa 20, Novosibirsk, 630092, Russian Federation

Diabetes is one of the most prevalent and chronic diseases worldwide and one of the fastest growing global health emergencies of the 21st century. Since diabetes is a multisystem disease that requires complex treatment, regular analysis of the health condition of patients with diabetes is necessary. With the development of wearable medical systems for monitoring human health, there is a huge potential for testing and, as a result, improving diabetes treatment. The purpose of the present review is to evaluate current developments in wearable biosensors for type 2 diabetes for personalized medicine. In particular, we will consider possibilities of sweat testing for noninvasive analysis of glucose levels in sweat and, consequently, in blood. Wearable biosensors, as a convenient means of measurement, have become a rapidly growing area of interest due to their ability to integrate traditional medical diagnostic tools with miniature laboratory-on-body analytical devices. Diabetes is best treated through tight glycemic control by monitoring glucose levels. The availability of regular testing for an individual's condition is of great importance. Recently, various methods for sensory analysis of diabetes biomarkers have been developed based on new principles, in particular, using various carbon materials (carbon dots, graphene, and carbon tubes). These methods are discussed in this review.

Fulltext pdf (19 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2023.08.039541
Keywords: wearable biosensors, glucose, principles of analysis, achievements, technologies for the development of sensors, current response, sensitivity
PACS: 07.07.Df, 87.19.xv, 87.85.fk (all)
DOI: 10.3367/UFNe.2023.08.039541
URL: https://ufn.ru/en/articles/2024/5/c/
001318665600003
2-s2.0-85197600307
2024PhyU...67..487A
Citation: Antonova I V, Ivanov A I "Wearable noninvasive glucose sensors based on graphene and other carbon materials" Phys. Usp. 67 487–509 (2024)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 28th, March 2023, revised: 7th, August 2023, 8th, August 2023

Оригинал: Антонова И В, Иванов А И «Носимые неинвазивные сенсоры глюкозы на основе графена и других углеродных материалов» УФН 194 520–545 (2024); DOI: 10.3367/UFNr.2023.08.039541

References (153) Cited by (1) Similar articles (20) ↓

  1. I.V. Antonova “Straintronics of 2D inorganic materials for electronic and optical applicationsPhys. Usp. 65 567–596 (2022)
  2. V.V. Lider “Precise determination of crystal lattice parametersPhys. Usp. 63 907–928 (2020)
  3. K.N. Solov’ev, E.A. Borisevich “Intramolecular heavy-atom effect in the photophysics of organic moleculesPhys. Usp. 48 231–253 (2005)
  4. T.V. Tropin, Ju.W.P. Schmelzer, V.L. Aksenov “Modern aspects of the kinetic theory of glass transitionPhys. Usp. 59 42–66 (2016)
  5. G.N. Makarov “Laser applications in nanotechnology: nanofabrication using laser ablation and laser nanolithographyPhys. Usp. 56 643–682 (2013)
  6. I.V. Zolotukhin, Yu.E. Kalinin “Amorphous metallic alloysSov. Phys. Usp. 33 (9) 720–738 (1990)
  7. G.V. Kozlov “Structure and properties of particulate-filled polymer nanocompositesPhys. Usp. 58 33–60 (2015)
  8. A.V. Eletskii “Carbon nanotubes and their emission propertiesPhys. Usp. 45 369–402 (2002)
  9. A.D. Pogrebnjak, A.P. Shpak et alStructures and properties of hard and superhard nanocomposite coatingsPhys. Usp. 52 29–54 (2009)
  10. A.F. Bunkin, N.I. Koroteev “Nonlinear laser spectroscopy of gases, gas flows, and lowtemperature plasmasSov. Phys. Usp. 24 394–411 (1981)
  11. P.G. Frick, D.D. Sokoloff, R.A. Stepanov “Wavelets for the space-time structure analysis of physical fieldsPhys. Usp. 65 62–89 (2022)
  12. V.V. Val’kov, M.S. Shustin et alTopological superconductivity and Majorana states in low-dimensional systemsPhys. Usp. 65 2–39 (2022)
  13. A.V. Eletskii “Mechanical properties of carbon nanostructures and related materialsPhys. Usp. 50 225–261 (2007)
  14. A.V. Eletskii, B.M. Smirnov “Fullerenes and carbon structuresPhys. Usp. 38 935–964 (1995)
  15. V.V. Zosimov, L.M. Lyamshev “Fractals in wave processesPhys. Usp. 38 347–384 (1995)
  16. E.D. Eidelman “Thermoelectric effect and thermoelectric generator based on carbon nanostructures: achievements and prospectsPhys. Usp. 64 535–557 (2021)
  17. V.M. Pudalov “Measurements of the magnetic properties of conduction electronsPhys. Usp. 64 3–27 (2021)
  18. V.N. Dolgunin, A.N. Kudi, M.A. Tuev “Mechanisms and kinetics of gravity separation of granular materialsPhys. Usp. 63 545–561 (2020)
  19. V.V. Brazhkin “Ultrahard nanomaterials: myths and realityPhys. Usp. 63 523–544 (2020)
  20. L.A. Chernozatonskii, A.A. Artyukh “Quasi-two-dimensional transition metal dichalcogenides: structure, synthesis, properties and applicationsPhys. Usp. 61 2–28 (2018)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions