Issues

 / 

2024

 / 

May

  

Reviews of topical problems


Wearable noninvasive glucose sensors based on graphene and other carbon materials

  a, b,   a
a Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, prosp. Lavrent'eva 13, Novosibirsk, 630090, Russian Federation
b Novosibirsk State Technical University, pr. K. Marksa 20, Novosibirsk, 630092, Russian Federation

Diabetes is one of the most prevalent and chronic diseases worldwide and one of the fastest growing global health emergencies of the 21st century. Since diabetes is a multisystem disease that requires complex treatment, regular analysis of the health condition of patients with diabetes is necessary. With the development of wearable medical systems for monitoring human health, there is a huge potential for testing and, as a result, improving diabetes treatment. The purpose of the present review is to evaluate current developments in wearable biosensors for type 2 diabetes for personalized medicine. In particular, we will consider possibilities of sweat testing for noninvasive analysis of glucose levels in sweat and, consequently, in blood. Wearable biosensors, as a convenient means of measurement, have become a rapidly growing area of interest due to their ability to integrate traditional medical diagnostic tools with miniature laboratory-on-body analytical devices. Diabetes is best treated through tight glycemic control by monitoring glucose levels. The availability of regular testing for an individual's condition is of great importance. Recently, various methods for sensory analysis of diabetes biomarkers have been developed based on new principles, in particular, using various carbon materials (carbon dots, graphene, and carbon tubes). These methods are discussed in this review.

Typically, an English full text is available in about 1 month from the date of publication of the original article.

Keywords: wearable biosensors, glucose, principles of analysis, achievements, technologies for the development of sensors, current response, sensitivity
PACS: 07.07.Df, 87.19.xv, 87.85.fk (all)
DOI: 10.3367/UFNe.2023.08.039541
URL: https://ufn.ru/en/articles/2024/5/c/
Citation: Antonova I V, Ivanov A I "Wearable noninvasive glucose sensors based on graphene and other carbon materials" Phys. Usp. 67 (5) (2024)

Received: 28th, March 2023, revised: 7th, August 2023, 8th, August 2023

Оригинал: Антонова И В, Иванов А И «Носимые неинвазивные сенсоры глюкозы на основе графена и других углеродных материалов» УФН 194 520–545 (2024); DOI: 10.3367/UFNr.2023.08.039541

References (153) Similar articles (20) ↓

  1. I.V. Antonova “Straintronics of 2D inorganic materials for electronic and optical applications65 567–596 (2022)
  2. V.V. Lider “Precise determination of crystal lattice parameters63 907–928 (2020)
  3. K.N. Solov’ev, E.A. Borisevich “Intramolecular heavy-atom effect in the photophysics of organic molecules48 231–253 (2005)
  4. T.V. Tropin, Ju.W.P. Schmelzer, V.L. Aksenov “Modern aspects of the kinetic theory of glass transition59 42–66 (2016)
  5. G.N. Makarov “Laser applications in nanotechnology: nanofabrication using laser ablation and laser nanolithography56 643–682 (2013)
  6. I.V. Zolotukhin, Yu.E. Kalinin “Amorphous metallic alloys33 (9) 720–738 (1990)
  7. G.V. Kozlov “Structure and properties of particulate-filled polymer nanocomposites58 33–60 (2015)
  8. A.V. Eletskii “Carbon nanotubes and their emission properties45 369–402 (2002)
  9. A.D. Pogrebnjak, A.P. Shpak et alStructures and properties of hard and superhard nanocomposite coatings52 29–54 (2009)
  10. A.F. Bunkin, N.I. Koroteev “Nonlinear laser spectroscopy of gases, gas flows, and lowtemperature plasmas24 394–411 (1981)
  11. P.G. Frick, D.D. Sokoloff, R.A. Stepanov “Wavelets for the space-time structure analysis of physical fields65 62–89 (2022)
  12. V.V. Val’kov, M.S. Shustin et alTopological superconductivity and Majorana states in low-dimensional systems65 2–39 (2022)
  13. A.V. Eletskii “Mechanical properties of carbon nanostructures and related materials50 225–261 (2007)
  14. A.V. Eletskii, B.M. Smirnov “Fullerenes and carbon structures38 935–964 (1995)
  15. V.V. Zosimov, L.M. Lyamshev “Fractals in wave processes38 347–384 (1995)
  16. E.D. Eidelman “Thermoelectric effect and thermoelectric generator based on carbon nanostructures: achievements and prospects64 535–557 (2021)
  17. V.M. Pudalov “Measurements of the magnetic properties of conduction electrons64 3–27 (2021)
  18. V.N. Dolgunin, A.N. Kudi, M.A. Tuev “Mechanisms and kinetics of gravity separation of granular materials63 545–561 (2020)
  19. V.V. Brazhkin “Ultrahard nanomaterials: myths and reality63 523–544 (2020)
  20. L.A. Chernozatonskii, A.A. Artyukh “Quasi-two-dimensional transition metal dichalcogenides: structure, synthesis, properties and applications61 2–28 (2018)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions