Issues

 / 

2024

 / 

May

  

Reviews of topical problems


Wearable noninvasive glucose sensors based on graphene and other carbon materials

  a, b,   a
a Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, prosp. Lavrent'eva 13, Novosibirsk, 630090, Russian Federation
b Novosibirsk State Technical University, pr. K. Marksa 20, Novosibirsk, 630092, Russian Federation

Diabetes is one of the most prevalent and chronic diseases worldwide and one of the fastest growing global health emergencies of the 21st century. Since diabetes is a multisystem disease that requires complex treatment, regular analysis of the health condition of patients with diabetes is necessary. With the development of wearable medical systems for monitoring human health, there is a huge potential for testing and, as a result, improving diabetes treatment. The purpose of the present review is to evaluate current developments in wearable biosensors for type 2 diabetes for personalized medicine. In particular, we will consider possibilities of sweat testing for noninvasive analysis of glucose levels in sweat and, consequently, in blood. Wearable biosensors, as a convenient means of measurement, have become a rapidly growing area of interest due to their ability to integrate traditional medical diagnostic tools with miniature laboratory-on-body analytical devices. Diabetes is best treated through tight glycemic control by monitoring glucose levels. The availability of regular testing for an individual's condition is of great importance. Recently, various methods for sensory analysis of diabetes biomarkers have been developed based on new principles, in particular, using various carbon materials (carbon dots, graphene, and carbon tubes). These methods are discussed in this review.

Typically, an English full text is available in about 1 month from the date of publication of the original article.

Keywords: wearable biosensors, glucose, principles of analysis, achievements, technologies for the development of sensors, current response, sensitivity
PACS: 07.07.Df, 87.19.xv, 87.85.fk (all)
DOI: 10.3367/UFNe.2023.08.039541
URL: https://ufn.ru/en/articles/2024/5/c/
Citation: Antonova I V, Ivanov A I "Wearable noninvasive glucose sensors based on graphene and other carbon materials" Phys. Usp. 67 (5) (2024)

Received: 28th, March 2023, revised: 7th, August 2023, 8th, August 2023

Оригинал: Антонова И В, Иванов А И «Носимые неинвазивные сенсоры глюкозы на основе графена и других углеродных материалов» УФН 194 520–545 (2024); DOI: 10.3367/UFNr.2023.08.039541

References (153) ↓ Similar articles (20)

  1. International Diabetes Federation, IDF Diabetes Atlas, 10th ed., Brussels, Belgium. 2021, data obrashcheniya 28.03.2023, https://www.diabetesatlas.org
  2. Hatada M et al Sens. Actuators B 351 130914 (2022)
  3. Liu J, Bao S, Wang X Micromachines 13 184 (2022)
  4. Pullano S A et al Theranostics 12 493 (2022)
  5. Chen Z et al Green Chem. 26 3801 (2024)
  6. Clark L C (Jr.), Lyons C Ann. New York Acad. Sci. 102 29 (1962)
  7. Updike S J, Hicks G P Nature 214 986 (1967)
  8. Guilbault G G, Lubrano G J Anal. Chim. Acta 64 439 (1973)
  9. Tarasov Yu V i dr Problemy Endokrinologii 61 (4) 54 (2015)
  10. Wang J Electroanalysis 13 983 (2001)
  11. Rahman M M et al Sensors 10 4855 (2010)
  12. Sabu C et al Biosens. Bioelectron. 141 111201 (2019)
  13. Niu X H et al Anal. Methods 8 1755 (2016)
  14. Pu Z et al Biomicrofluidics 10 011910 (2016)
  15. Peña-Bahamonde J et al J. Nanobiotechnol. 16 75 (2018)
  16. Ferreira R G, Silva A P, Nunes-Pereira J ACS Sens. 9 1104 (2024)
  17. Peng B et al Small 16 2002681 (2020)
  18. Jang M et al Sensors 22 6985 (2022)
  19. Khoshmanesh F et al Biosens. Bioelectron. 176 112946 (2021)
  20. Wei S et al J. Mater. Sci. Technol. 37 71 (2020)
  21. Liu Y et al RSC Adv. 6 18654 (2016)
  22. Gao W, Brooks G A, Klonoff D C J. Appl. Physiol. 124 548 (2018)
  23. Dang W et al Biosens. Bioelectron. 107 192 (2018)
  24. Alizadeh N, Salimi A, Hallaj R Microchim. Acta 187 14 (2020)
  25. Qu Z et al Chem. Commun. 49 9830 (2013)
  26. Tuchin V V (Ed.) Handbook Of Optical Sensing Of Glucose In Biological Fluids And Tissues (Boca Raton, FL: CRC Press, 2009)
  27. Dunaev A, Tuchin V (Eds) Biomedical Photonics For Diabetes Research (Boca Raton, FL: CRC Press, 2022)
  28. Yu Z et al Prog. Biomed. Eng. 3 022004 (2021)
  29. Larin K V et al Phys. Med. Biol. 48 1371 (2003)
  30. Chen T-L et al J. Biomed. Opt. 23 047001 (2018)
  31. Phan Q-H, Lo Y-L Opt. Lasers Eng. 92 120 (2017)
  32. Othman H O, Hassan R O, Faizullah A T Microchem. J. 163 105919 (2021)
  33. Wu W et al Angew. Chem. Int. Ed. 49 6554 (2010)
  34. Sun X Anal. Chim. Acta 1206 339226 (2022)
  35. Haynes C L et al J. Raman Spectrosc. 36 471 (2005)
  36. Lyandres O et al Diabetes Technol. Therapeut. 10 257 (2008)
  37. Liu Y et al Biosens. Bioelectron. 94 131 (2017)
  38. Dina N E et al Anal. Chem. 90 2484 (2018)
  39. Bantz K C et al Phys. Chem. Chem. Phys. 13 11551 (2011)
  40. Chen H et al ACS Sens. 6 2378 (2021)
  41. Jin C M, Joo J B, Choi I Anal. Chem. 90 5023 (2018)
  42. Perez-Mayen L et al Nanoscale 8 11862 (2016)
  43. Yang D et al Anal. Chem. 90 14269 (2018)
  44. Hu S et al ACS Appl. Mater. Interfaces 12 55324 (2020)
  45. Lyandres O et al Analyst 135 2111 (2010)
  46. Lussier F et al ACS Nano 13 1403 (2019)
  47. He X et al Anal. Chem. 91 4296 (2019)
  48. Koh A et al Sci. Transl. Med. 8 366ra165 (2016)
  49. Xiao J et al Anal. Chem. 91 14803 (2019)
  50. Ray T R et al Sci. Transl. Med. 13 (587) eabd8109 (587)
  51. Klasner S A et al Anal. Bioanal. Chem. 397 1821 (2010)
  52. Bandodkar A J et al Sci. Adv. 5 eaav3294 (2019)
  53. Han H et al ACS Nano 12 932 (2018)
  54. Hou J et al Small 11 2738 (2015)
  55. Cui Y et al ACS Sens. 5 2096 (2020)
  56. Nyein H Y Y et al Sci. Adv. 5 eaaw9906 (2019)
  57. Saha S et al Sci. Rep. 7 6855 (2017)
  58. Hanna J et al Sci. Adv. 6 eaba5320 (2020)
  59. Choi H et al Proc. of the 2017 IEEE MTT-S Intern. Microwave Symp., IMS 2017, Honolulu, Hawaii, USA, 4-9 June 2017 (Piscataway, NJ: IEEE, 2017) p. 876
  60. Yilmaz T, Foster R, Hao Y Diagnostics 9 6 (2019)
  61. Cherevko A G et al Materials 15 7267 (2022)
  62. Zhang J et al ACS Omega 5 12937 (2020)
  63. Omer A E et al Sci. Rep. 10 15200 (2020)
  64. Bariya M, Nyein H Y Y, Javey A Nat. Electron. 1 160 (2018)
  65. Mani V et al TrAC Trends. Anal. Chem. 135 116164 (2021)
  66. Ren X et al ACS Sens. 8 2691 (2023)
  67. Sieg A, Guy R H, Delgado-Charro M B J. Pharma. Sci. 92 2295 (2003)
  68. Holze R "Book Review: Electrochemical Methods. Fundamentals and Applications (2nd Edition). By Allen J. Bard and Larry R. Faulkner" Angew. Chem. Int. Ed. 41 655 (2002)
  69. Zhang S et al Front. Bioeng. Biotechnol. 9 774210 (2021)
  70. Zheng L, Liu Y, Zhang C Sens. Actuators B 343 130131 (2021)
  71. Veeralingam S, Khandelwal S, Badhulika S IEEE Sensors J. 20 8437 (2020)
  72. Bauer M et al Anal. Bioanal. Chem. 413 763 (2021)
  73. Xiao J et al Anal. Chem. 91 14803 (2019)
  74. Jin X et al Biosens. Bioelectron. 196 113760 (2022)
  75. Heikenfeld J Electroanalysis 28 1242 (2016)
  76. Sonner Z et al Biomicrofluidics 9 031301 (2015)
  77. Karpova E V et al Anal. Chem. 91 3778 (2019)
  78. Sabury S, Kazemi S H, Sharif F Mater. Sci. Eng. C 49 297 (2015)
  79. Mazaheri M, Simchi A, Aashuri H Microchim. Acta 185 178 (2018)
  80. Gutés A, Carraro C, Maboudian R Biosens. Bioelectron. 33 56 (2012)
  81. Wu B et al Nanomaterials 8 993 (2018)
  82. Maity D, Minitha C R, Rajendra Kumar R T Mater. Sci. Eng. C 105 110075 (2019)
  83. Akhtar M A et al ACS Appl. Nano Mater. 2 1589 (2019)
  84. Yuan Y et al J. Electroanal. Chem. 855 113495 (2019)
  85. Peña-Bahamonde J et al J. Nanobiotechnol. 16 75 (2018)
  86. Zhang Z et al Lab Chip 19 3448 (2019)
  87. Zhang X et al Anal. Chem. 90 11780 (2018)
  88. Sempionatto J R, Moon J-M, Wang J ACS Sens. 6 1875 (2021)
  89. Jang H et al Nat. Commun. 13 6604 (2022)
  90. Ameri S K et al ACS Nano 11 7634 (2017)
  91. Bandodkar A J et al Biosens. Bioelectron. 54 603 (2014)
  92. Jia W et al Anal. Chem. 85 6553 (2013)
  93. Gao W et al Nature 529 509 (2016)
  94. He X et al Npj Flexible Electron. 6 60 (2022)
  95. Lee H et al Sci. Adv. 3 e1601314 (2017)
  96. Pu Z et al Sci. Adv. 7 eabd0199 (2021)
  97. Chang T et al Microsyst. Nanoeng. 8 25 (2022)
  98. Gordonov T et al Nat. Nanotechnol. 9 605 (2014)
  99. Zhang M G, Gorski W J. Am. Chem. Soc. 127 2058 (2005)
  100. Cuña M et al J. Nanosci. Nanotechnol. 6 2887 (2006)
  101. Wang L et al J. Mater. Chem. B 5 4019 (2017)
  102. Tehrani F, Bavarian B Sci. Rep. 6 27975 (2016)
  103. Wang Y et al ACS Nano 4 1790 (2010)
  104. Wang Z et al J. Phys. Chem. C 113 14071 (2009)
  105. Cao S et al Chem. Soc. Rev. 45 4747 (2016)
  106. Haghighi N, Hallaj R, Salimi A Mater. Sci. Eng. C 73 417 (2017)
  107. Panigrahi P et al Appl. Surf. Sci. 573 151579 (2022)
  108. Wu H et al Talanta 80 403 (2009)
  109. Taguchi M et al J. Diabetes Sci. Technol. 8 403 (2014)
  110. Hussain T et al Carbon 163 213 (2020)
  111. Emaminejad S et al Proc. Natl. Acad. Sci. USA 114 4625 (2017)
  112. Kinnamon D et al Sci. Rep. 7 13312 (2017)
  113. Imani S et al Nat. Commun. 7 11650 (2016)
  114. Sempionatto J R et al Lab Chip 17 1834 (2017)
  115. Shavelkina M B et al High Energy Chem. 57 (Suppl. 1) S200 (2023)
  116. Antonova I V et al Phys. Chem. Chem. Phys. 26 7844 (2024)
  117. Batvani N et al Sensing Bio-Sensing Res. 38 100532 (2022)
  118. Farandos N M et al Adv. Healthcare Mater. 4 792 (2015)
  119. Elsherif M et al Front. Med. 9 858784 (2022)
  120. Lee H et al Adv. Healthcare Mater. 7 1701150 (2018)
  121. Chatterjee P R et al J. Indian Med. Assoc. 101 481 (2003)
  122. Elsherif M et al ACS Nano 12 5452 (2018)
  123. Lin Y-R et al Sensors 18 3208 (2018)
  124. Park J et al Sci. Adv. 4 eaap9841 (2018)
  125. Ruan J-L et al Polymers 9 125 (2017)
  126. Guo S et al Matter 4 969 (2021)
  127. Keum D H et al Sci. Adv. 6 eaba3252 (2020)
  128. Kim J et al Nat. Commun. 8 14997 (2017)
  129. Mannoor M S et al Nat. Commun. 3 763 (2012)
  130. Na K et al IEEE Sens. J. 16 5003 (2016)
  131. Park J et al Nanoscale 8 10591 (2016)
  132. Figiela M et al Electroanalysis 34 1725 (2022)
  133. Sharma A et al ACS Omega 7 37748 (2022)
  134. Phetsang S et al Sci. Rep. 11 9302 (2021)
  135. Chen H-C, Su W-R, Yeh Y-C ACS Appl. Mater. Interfaces 12 32905 (2020)
  136. Wang Z et al Nanoscale 10 6629 (2018)
  137. Lipani L et al Nat. Nanotechnol. 13 504 (2018)
  138. Felix S et al Appl. Phys. A 123 620 (2017)
  139. Elahi M Y, Khodadadi A A, Mortazavi Y J. Electrochem. Soc. 161 B81 (2014)
  140. Liu M, Liu R, Chen W Biosens. Bioelectron. 45 206 (2013)
  141. Luo J et al Microchim. Acta 177 485 (2012)
  142. Luo L, Zhu L, Wang Z Bioelectrochemistry 88 156 (2012)
  143. Palanisamy S, Vilian A T E, Chen S-M Int. J. Electrochem. Sci. 7 2153 (2012)
  144. Xuan X, Yoon H S, Park J Y Biosens. Bioelectron. 109 75 (2018)
  145. Zhang Q et al Appl. Surf. Sci. 515 146062 (2020)
  146. Figiela M et al Sens. Actuators B 272 296 (2018)
  147. Mathew M, Sandhyarani N Electrochim. Acta 108 274 (2013)
  148. Phetsang S et al Sci. Rep. 11 9302 (2021)
  149. Cai S et al Nano Energy 93 106904 (2022)
  150. Lee H et al Nat. Nanotechnol. 11 566 (2016)
  151. Oh S Y et al ACS Appl. Mater. Interfaces 10 13729 (2018)
  152. Zhu X et al Anal. Chem. 91 10764 (2019)
  153. Daboss E V, Shcherbacheva E V, Karyakin A A Sens. Actuators B 380 133337 (2023)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions