Reviews of topical problems

Nanotransport controlled by means of the ratchet effect

  a, b,   a, b, §  c, *  b, d, e
a Kotel'nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, ul. Mokhovaya 11, kor. 7, Moscow, 125009, Russian Federation
b Moscow Institute of Physics and Technology (National Research University), Institutskii per. 9, Dolgoprudny, Moscow Region, 141701, Russian Federation
c Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, Ghenerala Naumova str. 17, Kiev, 03164, Ukraine
d Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, ul. Kosygina, 4, Moscow, 119991, Russian Federation
e Lomonosov Moscow State University, Vorobevy Gory, Moscow, 119991, Russian Federation

The directional motion of micro- and nanoparticles can be induced not only directly due to the effect of forces with a nonzero average value, which set the direction of the motion, but also, in the absence of such forces in systems with broken mirror symmetry, under the effect of nonequilibrium fluctuations of various natures (the motor or ratchet effect). Unlike other reviews on nanoparticle transport, we focus on the principles of nanotransport control by means of the ratchet effect, which has numerous practical applications and, in particular, is a promising mechanism for targeted delivery of drugs in living organisms. We explain in detail various techniques to arrange directional motion in asymmetric media by means of rectification of the nonequilibrium fluctuations that supply energy to the system and feature a zero average value of applied forces, whether actual or generalized. We consider in depth the properties and characteristics of ratchet systems, their dependences on temperature, load forces, and features of the periodic potential profile in which nanoparticles move, such as the frequency of fluctuations of this profile and its spatial and time asymmetry. A systematic description of factors that determine the direction of motion of ratchet systems is presented.

Fulltext is available at IOP
Keywords: nanotransport control, driven diffusive systems, ratchet effect, Brownian motors
PACS: 05.40.−a, 05.60.Cd (all)
DOI: 10.3367/UFNe.2019.05.038570
Citation: Gulyaev Yu V, Bugaev A S, Rozenbaum V M, Trakhtenberg L I "Nanotransport controlled by means of the ratchet effect" Phys. Usp. 63 311–326 (2020)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 17th, January 2019, revised: 2nd, May 2019, 22nd, May 2019

Оригинал: Гуляев Ю В, Бугаев А С, Розенбаум В М, Трахтенберг Л И «Управление нанотранспортом с помощью рэтчет-эффекта» УФН 190 337–354 (2020); DOI: 10.3367/UFNr.2019.05.038570

References (131) Cited by (8) Similar articles (20) ↓

  1. Yu.M. Romanovsky, V.P. Trifonenkov “Energetics and stochastic dynamics of intraneuron transport59 121–140 (2016)
  2. G.R. Ivanitskii “21st century: what is life from the perspective of physics?53 327–356 (2010)
  3. L.M. Zelenyi, A.V. Milovanov “Fractal topology and strange kinetics: from percolation theory to problems in cosmic electrodynamics47 749–788 (2004)
  4. Yu.G. Rudoi, A.D. Sukhanov “Thermodynamic fluctuations within the Gibbs and Einstein approaches43 1169–1199 (2000)
  5. Yu.L. Klimontovich “Nonlinear Brownian motion37 737–766 (1994)
  6. V.I. Klyatskin “Integral characteristics: a key to understanding structure formation in stochastic dynamic systems54 441–464 (2011)
  7. E.A. Vinogradov, I.A. Dorofeyev “Thermally stimulated electromagnetic fields of solids52 425–459 (2009)
  8. A.I. Olemskoi “Supersymmetric field theory of a nonequilibrium stochastic system as applied to disordered heteropolymers44 479–513 (2001)
  9. M.Yu. Kagan, A.V. Turlapov “BCS—BEC crossover, collective excitations, and hydrodynamics of superfluid quantum fluids and gases62 215–248 (2019)
  10. Yu.L. Klimontovich, A.S. Kovalev, P.S. Landa “Natural fluctuations in lasers15 95–113 (1972)
  11. Yu.M. Romanovsky, A.N. Tikhonov “Molecular energy transducers of the living cell. Proton ATP synthase: a rotating molecular motor53 893–914 (2010)
  12. Yu.V. Gulyaev, S.V. Tarasenko, V.G. Shavrov “Electromagnetic analogue of a first-type leaky surface elastic wave for the single interface between transparent dielectric media63 872–887 (2020)
  13. G.I. Strelkova, V.S. Anishchenko “Spatio-temporal structures in ensembles of coupled chaotic systems63 145–161 (2020)
  14. O.G. Bakunin “Stochastic instability and turbulent transport. Characteristic scales, increments, diffusion coefficients58 252–285 (2015)
  15. V.V. Uchaikin “Fractional phenomenology of cosmic ray anomalous diffusion56 1074–1119 (2013)
  16. O.G. Bakunin “Reconstruction of streamline topology, and percolation models of turbulent transport56 243–260 (2013)
  17. V.S. Dotsenko “Universal randomness54 259–280 (2011)
  18. V.I. Klyatskin “Clustering and diffusion of particles and passive tracer density in random hydrodynamic flows46 667–688 (2003)
  19. I.M. Dremin, O.V. Ivanov, V.A. Nechitailo “Wavelets and their uses44 447–478 (2001)
  20. L.I. Krishtalik “Proteins as specific polar media for charge transfer processes55 1192–1213 (2012)

The list is formed automatically.

© 1918–2021 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions