Issues

 / 

2020

 / 

April

  

Reviews of topical problems


Nanotransport controlled by means of the ratchet effect

  a, b,   a, b, §  c, *  b, d, e
a Kotel'nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, ul. Mokhovaya 11, kor. 7, Moscow, 125009, Russian Federation
b Moscow Institute of Physics and Technology (National Research University), Institutskii per. 9, Dolgoprudny, Moscow Region, 141701, Russian Federation
c Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, Ghenerala Naumova str. 17, Kiev, 03164, Ukraine
d Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, ul. Kosygina, 4, Moscow, 119991, Russian Federation
e Lomonosov Moscow State University, Vorobevy Gory, Moscow, 119991, Russian Federation

The directional motion of micro- and nanoparticles can be induced not only directly due to the effect of forces with a nonzero average value, which set the direction of the motion, but also, in the absence of such forces in systems with broken mirror symmetry, under the effect of nonequilibrium fluctuations of various natures (the motor or ratchet effect). Unlike other reviews on nanoparticle transport, we focus on the principles of nanotransport control by means of the ratchet effect, which has numerous practical applications and, in particular, is a promising mechanism for targeted delivery of drugs in living organisms. We explain in detail various techniques to arrange directional motion in asymmetric media by means of rectification of the nonequilibrium fluctuations that supply energy to the system and feature a zero average value of applied forces, whether actual or generalized. We consider in depth the properties and characteristics of ratchet systems, their dependences on temperature, load forces, and features of the periodic potential profile in which nanoparticles move, such as the frequency of fluctuations of this profile and its spatial and time asymmetry. A systematic description of factors that determine the direction of motion of ratchet systems is presented.

Fulltext pdf (698 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2019.05.038570
Keywords: nanotransport control, driven diffusive systems, ratchet effect, Brownian motors
PACS: 05.40.−a, 05.60.Cd (all)
DOI: 10.3367/UFNe.2019.05.038570
URL: https://ufn.ru/en/articles/2020/4/a/
000555762600001
2-s2.0-85091336823
2020PhyU...63..311G
Citation: Gulyaev Yu V, Bugaev A S, Rozenbaum V M, Trakhtenberg L I "Nanotransport controlled by means of the ratchet effect" Phys. Usp. 63 311–326 (2020)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 17th, January 2019, revised: 2nd, May 2019, 22nd, May 2019

Оригинал: Гуляев Ю В, Бугаев А С, Розенбаум В М, Трахтенберг Л И «Управление нанотранспортом с помощью рэтчет-эффекта» УФН 190 337–354 (2020); DOI: 10.3367/UFNr.2019.05.038570

References (131) ↓ Cited by (22) Similar articles (20)

  1. Kapitsa P L Usp. Fiz. Nauk 78 181 (1962); Kapitza P L Sov. Phys. Usp. 5 777 (1963)
  2. Shliomis M I Usp. Fiz. Nauk 112 427 (1974); Shliomis M I Sov. Phys. Usp. 17 153 (1974)
  3. Gokhshtein A Ya Usp. Fiz. Nauk 170 779 (2000); Gokhshtein A Ya Phys. Usp. 43 725 (2000)
  4. Bolotovskii B M, Serov A V Usp. Fiz. Nauk 173 667 (2003); Bolotovskii B M, Serov A V Phys. Usp. 46 645 (2003)
  5. Saxton M J Fundamental Concepts In Biophysics (Handbook of Modern Biophysics) Vol. 1 (Ed. T Jue) (New York: Humana, 2009) p. 147
  6. Ivanitskii G R i dr Usp. Fiz. Nauk 168 1221 (1998); Ivanitskii G R et al Phys. Usp. 41 1115 (1998)
  7. Caspi A, Granek R, Elbaum M Phys. Rev. E 66 011916 (2001)
  8. Herman I P Physics Of The Human Body (Berlin: Springer, 2016)
  9. Generalov M B (Red.-sost.) Mashiny i Apparaty Khimicheskikh i Neftekhimicheskikh Proizvodstv (M.: Mashinostroenie, 2004)
  10. Ulashchik V S Elektroforez Lekarstvennykh Veshchestv (Minsk: Belaruskaya Navuka, 2010)
  11. Kargin V A (Gl. red.) Entsiklopediya Polimerov Vol. 1 (M.: Sovetskaya entsiklopediya, 1972)
  12. Burke P J "Nanodielectrophoresis: electronic nanotweezers" Encyclopedia Of Nanoscience And Nanotechnology Vol. 6 (Ed. H S Nalwa) (Stevenson Ranch, CA: American Scientific, 2004) p. 623
  13. Pethig R Dielectrophoresis. Theory, Methodology, And Biological Applications (Hoboken, NJ: John Wiley and Sons, 2017)
  14. Pohl H A Dielectrophoresis: The Behavior Of Neutral Matter In Nonuniform Electric Fields (Cambridge: Cambridge Univ. Press, 1978)
  15. Pohl H A J. Appl. Phys. 22 869 (1951)
  16. Pohl H A, Hawk I Science 152 647 (1966)
  17. Schwan H P Adv. Biol. Med. Phys. 5 147 (1957)
  18. Schwan H P, Foster K R Proc. IEEE 68 104 (1980)
  19. Micro-Fluidics Cut Cancer Test from a Day to an Hour, IMEC Tech Forum, 7 October 2009, https://www.electronicsweekly.com/news/products/fpga-news/micro-fluidics-cut-cancer-test-from-a-day-to-an-hour-imec-tech-forum-2009-10/
  20. Pommer M S et al Electrophoresis 29 1213 (2008)
  21. Choi J-W, Pu A, Psaltis D Opt. Express 14 9780 (2006)
  22. Mahabadi S, Labeed F H, Hughes M P Electrophoresis 36 1493 (2015)
  23. Labeed F H, Coley H M, Hughes M P Biochim. Biophys. Acta BBA Gen. Subjects 1760 922 (2006)
  24. Zheng L et al 2003 Third IEEE Conf. Nanotechnol. 2003 IEEE-NANO 2003 2 437 (2003)
  25. Reimann P Phys. Rep. 361 57 (2002)
  26. Hänggi P, Marchesoni F Rev. Mod. Phys. 81 387 (2009)
  27. Schadschneider A, Chowdhury D, Nishinari K Stochastic Transport In Complex Systems: From Molecules To Vehicles (Amsterdam: Elsevier, 2010)
  28. Goychuk I Beilstein J. Nanotechnol. 7 328 (2016)
  29. Cubero D, Renzoni F Brownian Ratchets: From Statistical Physics To Bio And Nano-Motors (Cambridge: Cambridge Univ. Press, 2016)
  30. Browne W R, Feringa B L Nature Nanotechnol. 1 25 (2006)
  31. Kay E R, Leigh D A, Zerbetto F Angew. Chem. Int. Ed. 46 72 (2006)
  32. Saha S, Stoddart J F Chem. Soc. Rev. 36 77 (2007)
  33. Cheng C, Stoddart J F Chem. Phys. Chem. 17 1780 (2016)
  34. Howard J Mechanics Of Motor Proteins And The Cytoskeleton (Sunderland, MA: Sinauer Associates, 2001)
  35. Romanovskii Yu L, Tikhonov A N Usp. Fiz. Nauk 180 931 (2010); Romanovsky Yu M, Tikhonov A N Phys. Usp. 53 893 (2010)
  36. Bressloff P C, Newby J M Rev. Mod. Phys. 85 135 (2013)
  37. Chowdhury D Phys. Rep. 529 1 (2013)
  38. Kolomeisky A B Motor Proteins And Molecular Motors (Boca Raton, FL: CRS Press. Taylor and Francis Group, 2015)
  39. Hoffmann P M Rep. Prog. Phys. 79 032601 (2016)
  40. Belinicher V I, Sturman B I Usp. Fiz. Nauk 130 415 (1980); Belinicher V I, Sturman B I Sov. Phys. Usp. 23 199 (1980)
  41. Lau B et al Phys. Rev. E 93 062128 (2016)
  42. Li C-P, Chen H-B, Zheng Z-G Front. Phys. 12 120502 (2017)
  43. Chauwin J-F, Ajdari A, Prost J Europhys. Lett. 27 421 (1994)
  44. Rozenbaum V M Pis’ma ZhETF 88 391 (2008); Rozenbaum V M JETP Lett. 88 342 (2008)
  45. Wu S-H et al Nano Lett. 16 5261 (2016)
  46. Kedem O, Lau B, Weiss E A Nano Lett. 17 5848 (2017)
  47. Rozenbaum V M et al J. Chem. Phys. 145 064110 (2016)
  48. Rozenbaum V M, Shapochkina I V Phys. Rev. E 84 051101 (2011)
  49. Markin V S, Tsong T Y Biophys. J. 59 1308 (1991)
  50. Qian H, Elson E L Biophys. Chem. 101 565 (2002)
  51. Rozenbaum V M et al J. Phys. Chem. B 108 15880 (2004)
  52. Rozenbaum V M Zh. Eksp. Teor. Fiz. 137 740 (2010); Rozenbaum V M JETP 110 653 (2010)
  53. Astumian R D, Bier M Phys. Rev. Lett. 72 1766 (1994)
  54. Prost J et al Phys. Rev. Lett. 72 2652 (1994)
  55. Astumian R D J. Phys. Chem. 100 19075 (1996)
  56. Parrondo J M R et al Europhys. Lett. 43 248 (1998)
  57. Parmeggiani A et al Phys. Rev. E 60 2127 (1999)
  58. Palffy-Muhoray P, Kosa T, Weinan E Appl. Phys. A 75 293 (2002)
  59. Grimm A, Stark H Soft Matter 7 3219 (2011)
  60. Rozenbaum V M et al Phys. Rev. E 83 051120 (2011)
  61. Rozenbaum V M et al Phys. Rev. E 94 052140 (2016)
  62. Goychuk I Chem. Phys. 375 450 (2010)
  63. Goychuk I, Kharchenko V O Phys. Rev. E 85 051131 (2012)
  64. Goychuk I, Kharchenko V O Math. Model. Nature Phenom. 8 144 (2013)
  65. Lv W et al Physica A 437 149 (2015)
  66. Kharchenko V, Goychuk I New J. Phys. 14 043042 (2012)
  67. Goychuk I, Kharchenko V O, Metzler R PLoS ONE 9 e91700 (2014)
  68. Goychuk I, Kharchenko V O, Metzler R Phys. Chem. Chem. Phys. 16 16524 (2014)
  69. Goychuk I Adv. Chem. Phys. 150 187 (2012)
  70. Goychuk I Phys. Biology 12 016013 (2015)
  71. Kula J, Kostur M, Luczka J Chem. Phys. 235 27 (1998)
  72. Nobelevskuyu premiyu po khimii prisudili za sintez molekulyarnykh mashin, Interfaks, 5 oktyabrya 2016, http://www.interfax.ru/world/531163
  73. Press release: TheNobel Prize in Chemistry 2016, http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2016/press.html
  74. Zitserman V Yu i dr Pis’ma ZhETF 105 315 (2017); Zitserman V Yu et al JETP Lett. 105 335 (2017)
  75. Gorre-Talini L, Spatz J P, Silberzan P Chaos 8 650 (1998)
  76. Rozenbaum V M, Shapochkina I V, Trakhtenberg L I Usp. Fiz. Nauk 189 529 (2019); Rozenbaum V M, Shapochkina I V, Trakhtenberg L I Phys. Usp. 62 496 (2019)
  77. Risken H The Fokker-Planck Equation: Methods Of Solution And Applications (Berlin: Springer-Verlag, 1989)
  78. Bartussek R, Reimann P, Hänggi P Phys. Rev. Lett. 76 1166 (1996)
  79. Chialvo D R, Millonas M M Phys. Lett. A 209 26 (1995)
  80. Astumian R D, Hänggi P Phys. Today 55 (11) 33 (2002)
  81. Gorre-Talini L, Jeanjean S, Silberzan P Phys. Rev. E 56 2025 (1997)
  82. Okada Y, Hirokawa N Science 283 1152 (1999)
  83. Rozenbaum V M Zh. Eksp. Teor. Fiz. 137 740 (2010); Rozenbaum V M JETP 110 653 (2010)
  84. Leibler S, Huse D A J. Cell Biol. 121 1357 (1993)
  85. Gilbert S P et al Nature 373 671 (1995)
  86. Hunt A J, Gittes F, Howard J Biophys. J. 67 766 (1994)
  87. Svoboda K, Block S M Cell 77 773 (1994)
  88. Rozenbaum V M, Chernova A A Surf. Sci. 603 3297 (2009)
  89. Rozenbaum V M et al Phys. Rev. E 84 021104 (2011)
  90. Derényi I, Astumian R D Phys. Rev. E 58 7781 (1998)
  91. Zwanzig R J. Phys. Chem. 96 3926 (1992)
  92. Ai B, Liu L Phys. Rev. E 74 051114 (2006)
  93. Makhnovskii Yu A et al J. Chem. Phys. 146 154103 (2017)
  94. Reguera D et al Phys. Rev. Lett. 108 020604 (2012)
  95. Shi D et al Macromolecules 41 8167 (2008)
  96. Zhang H-J et al Macromol. Rapid Commun. 33 1952 (2012)
  97. Wambaugh J F et al Phys. Rev. Lett. 83 5106 (1999)
  98. Gol’danskii V I Dokl. AN SSSR 124 1261 (1959); Gol’danskii V I Sov. Phys. Dokl. 4 1172 (1959)
  99. Trakhtenberg L I, Klochikhin V L, Pshezhetsky S Ya Chem. Phys. 69 121 (1982)
  100. Gol’danskii V I, Trakhtenberg L I, Flerov V N Tunnel’nye Yavleniya v Khimicheskoi Fizike (M.: Nauka, 1986); Per. na angl. yaz., Gol’danskii V I, Trakhtenberg L I, Fleurov V N Tunneling Phenomena In Chemical Physics (New York: Gordon and Breach Sci. Publ., 1989)
  101. Hänggi P, Talkner P, Borkovec M Rev. Mod. Phys. 62 251 (1990)
  102. Dogonadze R R, Kuznetsov A M, Levich V G Electrochim. Acta 13 1025 (1968)
  103. Reimann P, Grifoni M, Hänggi P Phys. Rev. Lett. 79 10 (1997)
  104. Linke H et al Science 286 2314 (1999)
  105. Lau B et al Mater. Horiz. 4 310 (2017)
  106. Rozenbaum V M et al Phys. Rev. E 85 041116 (2012)
  107. Rozenbaum V M i dr Pis’ma ZhETF 107 525 (2018); Rozenbaum V M i dr JETP Lett. 107 506 (2018)
  108. Rozenbaum V M et al Phys. Rev. E 99 012103 (2019)
  109. Rozenbaum V M Pis’ma ZhETF 79 475 (2004); Rozenbaum V M JETP Lett. 79 388 (2004)
  110. Doering C R, Dontcheva L A, Klosek M M Chaos 8 643 (1998)
  111. Parrondo J M R Phys. Rev. E 57 7297 (1998)
  112. Dekhtyar M L, Ishchenko A A, Rozenbaum V M J. Phys. Chem. B 110 20111 (2006)
  113. Rozenbaum V M et al Phys. Rev. E 89 052131 (2014)
  114. Rozenbaum V M i dr Pis’ma ZhETF 105 521 (2017); Rozenbaum V M et al JETP Lett. 105 542 (2017)
  115. Mielke A Ann. Physik 4 721 (1995)
  116. Kedem O, Caplan S R Trans. Faraday Soc. 61 1897 (1965)
  117. Rozenbaum V M et al Phys. Rev. E 71 041102 (2005)
  118. Shved N Yu, Shapochkina I V, Rozenbaum V M Vestnik Belorussk. Gos. Un-ta. Ser. 1 (2) 27 (2014)
  119. Huxley A F Prog. Biophys. Biophys. Chem. 7 255 (1957)
  120. Wang H, Oster G Appl. Phys. A 75 315 (2002)
  121. Rozenbaum V M FNT 40 604 (2014); Rozenbaum V M Low Temp. Phys. 40 469 (2014)
  122. Savel’ev S et al Phys. Rev. E 70 066109 (2004)
  123. Porto M, Urbakh M, Klafter J Phys. Rev. Lett. 84 6058 (2000)
  124. Marchesoni F Phys. Lett. A 237 126 (1998)
  125. Prass B et al Ber. Bunsenges. Phys. Chem. 102 498 (1998)
  126. Ivanov G K, Kozhushner M A, Trakhtenberg L I J. Chem. Phys. 113 1992 (2000)
  127. Gommers R, Bergamini S, Renzoni F Phys. Rev. Lett. 95 073003 (2005)
  128. Faucheux L P et al Phys. Rev. Lett. 74 1504 (1995)
  129. Robilliard S, Lucas D, Grynberg G Appl. Phys. A 75 213 (2002)
  130. Rozenbaum V M et al Phys. Rev. E 100 022115 (2019)
  131. Dekhtyar’ M L, Rozenbaum V M, Trakhtenberg L I Teoreticheskaya Eksperimental’naya Khimiya 55 210 (2019); Dekhtyar M L, Rozenbaum V M, Trakhtenberg L I Theor. Exp. Chem. 55 232 (2019)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions