Issues

 / 

2019

 / 

March

  

Conferences and symposia


Multifunctional far-field luminescence nanoscope for studying single molecules and quantum dots

 a, b,  a, b, c,  a, d, b
a Moscow Institute of Physics and Technology (National Research University), Institutskii per. 9, Dolgoprudny, Moscow Region, 141701, Russian Federation
b Institute of Spectroscopy, Russian Academy of Sciences, ul. Fizicheskaya 5, Troitsk, Moscow, 108840, Russian Federation
c École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
d Moscow State Pedagogical University, M. Pirogovskay, 1, Moscow, 119435, Russian Federation

Far-field fluorescence spectromicroscopy of single quantum emitters (SQE) (organic molecules, quantum dots, color centers in crystals) is one of the actively developing fields of modern photonics, which is widely demanded in various applications in physics, chemistry, material sciences, life sciences, quantum technologies. In this paper we present a description of multifunctional experimental setup, which was developed last years in the Institute for Spectroscopy of the Russian Academy of Sciences. It allows to measure optical spectra and fluorescence images of SQE, as well as their temporal behavior and luminescence kinetics, in a broad range of temperatures (from cryogenic to ambient). It is shown that spatial coordinates of SQE can be reconstructed with subdiffractional accuracy (up to a few Angstroms). Some examples of the developed methods for multiparameter superresolution microscopy (nanoscopy) of materials and nanostructures are presented.

Fulltext pdf (777 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2018.06.038461
Keywords: luminescence, microscopy, nanoscopy, single molecule, quantum dot, color center, antibunching, kinetics, polymers, glasses, crystals, nanodiagnostics, cryogenic temperatures, Shpol'skii matrix, sensor, CdSe, NV-center
PACS: 42.79.−e, 78.55.−m, 78.67.Hc (all)
DOI: 10.3367/UFNe.2018.06.038461
URL: https://ufn.ru/en/articles/2019/3/i/
000469214700009
2-s2.0-85069480377
2017DokPh..62..294N
Citation: Eremchev I Yu, Eremchev M Yu, Naumov A V "Multifunctional far-field luminescence nanoscope for studying single molecules and quantum dots" Phys. Usp. 62 294–303 (2019)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 28th, August 2018, 20th, June 2018

Оригинал: Еремчев И Ю, Еремчев М Ю, Наумов А В «Многофункциональный люминесцентный наноскоп дальнего поля для исследования одиночных молекул и квантовых точек (к 50-летию Института спектроскопии РАН)» УФН 189 312–322 (2019); DOI: 10.3367/UFNr.2018.06.038461

References (64) ↓ Cited by (35) Similar articles (20)

  1. Moerner W E Angew. Chem. Int. Ed. 54 8067 (2015)
  2. Betzig E Angew. Chem. Int. Ed. 54 8034 (2015)
  3. Hell S W Angew. Chem. Int. Ed. 54 8054 (2015)
  4. Henriques R et al Nature Meth. 7 339 (2010)
  5. Jones S A et al Nature Meth. 8 499 (2011)
  6. von Diezmann A, Shechtman Y, Moerner W E Chem. Rev. 117 7244 (2017)
  7. Bates M et al Science 317 1749 (2007)
  8. Naumov A V Usp. Fiz. Nauk 183 633 (2013); Naumov A V Phys. Usp. 56 605 (2013)
  9. Hofmann C et al Phys. Rev. Lett. 90 013004 (2003)
  10. Nirmal M et al Nature 383 802 (1996)
  11. Dvurechenskii A V, Yakimov A I Usp. Fiz. Nauk 171 1371 (2001); Dvurechenskii A V, Yakimov A I Phys. Usp. 44 1304 (2001)
  12. Razumov V F Usp. Fiz. Nauk 186 1368 (2016); Razumov V F Phys. Usp. 59 1258 (2016)
  13. Osad’ko I S Usp. Fiz. Nauk 186 489 (2016); Osad’ko I S Phys. Usp. 59 462 (2016)
  14. Doherty M W et al Phys. Rep. 528 1 (2013)
  15. Mishin A S et al Curr. Opin. Chem. Biol. 27 1 (2015)
  16. Turchin I V Usp. Fiz. Nauk 186 550 (2016); Turchin I V Phys. Usp. 59 487 (2016)
  17. Doronina-Amitonova L V i dr Usp. Fiz. Nauk 185 371 (2015); Doronina-Amitonova L V et al Phys. Usp. 58 345 (2015)
  18. Kinkhabwala A et al Nature Photon. 3 654 (2009)
  19. Vinogradov A P i dr Usp. Fiz. Nauk 182 1122 (2012); Vinogradov A P et al Phys. Usp. 55 1046 (2012)
  20. Krasnok A E i dr Usp. Fiz. Nauk 183 561 (2013); Krasnok A E et al Phys. Usp. 56 539 (2013)
  21. Vitukhnovskii A G Usp. Fiz. Nauk 181 1341 (2011); Vitukhnovsky A G Phys. Usp. 54 1268 (2011)
  22. Vitukhnovskii A G Usp. Fiz. Nauk 183 653 (2013); Vitukhnovsky A G Phys. Usp. 56 623 (2013)
  23. Vinogradov A P, Dorofeenko A V, Zukhdi S Usp. Fiz. Nauk 178 511 (2008); Vinogradov A P, Dorofeenko A V, Zouhdi S Phys. Usp. 51 485 (2008)
  24. Brinks D et al Chem. Soc. Rev. 43 2476 (2014)
  25. Naumov A V et al Phys. Rev. B 6321 212302 (2001)
  26. Vainer Yu G, Naumov A V, Bauer M, Kador L Phys. Rev. Lett. 97 185501 (2006)
  27. Eremchev I Yu, Naumov A V, Vainer Yu G, Kador L J. Chem. Phys. 130 184507 (2009)
  28. Naumov A V et al Angew. Chem. Int. Ed. 48 9747 (2009)
  29. Naumov A V et al Phys. Chem. Chem. Phys. 13 1734 (2011)
  30. Eremchev I Y, Vainer Y G, Naumov A V, Kador L Phys. Chem. Chem. Phys. 13 1843 (2011)
  31. Osad’ko I S et al Phys. Rev. A 86 053802 (2012)
  32. Eremchev I Yu, Vainer Yu G, Naumov A V Fiz. Tverd. Tela 55 652 (2013); Eremchev I Y, Vainer Y G, Naumov A V, Kador L Phys. Solid State 55 710 (2013)
  33. Anikushina T A, Gladush M G, Gorshelev A A, Naumov A V Faraday Discuss. 184 263 (2015)
  34. Osad’ko I S, Eremchev I Yu, Naumov A V J. Phys. Chem. C 119 22646 (2015)
  35. Eremchev I Yu, Osad’ko I S, Naumov A V J. Phys. Chem. C 120 22004 (2016)
  36. Naumov A V et al Nano Lett. 18 6129 (2018)
  37. Naumov A, Eremchev I Yu, Gorshelev A A Eur. Phys. J. D 68 348 (2014)
  38. Moerner W E, Kador L Phys. Rev. Lett. 62 2535 (1989)
  39. Orrit M, Bernard J Phys. Rev. Lett. 65 2716 (1990)
  40. Güttler F et al Chem. Phys. Lett. 217 393 (1994)
  41. van Oijen A M et al Chem. Phys. Lett. 292 183 (1998)
  42. Weiss S Science 283 1676 (1999)
  43. Eid J et al Science 323 133 (2009)
  44. Dittrich P S, Manz A Nature Rev. Drug Discov. 5 210 (2006)
  45. Mehta S B et al Proc. Natl. Acad. Sci. USA 113 E6352 (2016)
  46. Rust M J, Bates M, Zhuang X Nature Meth. 3 793 (2006)
  47. Betzig E et al Science 313 1642 (2006)
  48. Efros A L, Nesbitt D J Nature Nanotechnol. 11 661 (2016)
  49. Shirasaki Y et al Nature Photon. 7 13 (2013)
  50. Jelezko F, Wrachtrup J Phys. Status Solidi A 203 3207 (2006)
  51. Chizhik A I et al Nano Lett. 11 1700 (2011)
  52. Türschmann P et al Nano Lett. 17 4941 (2017)
  53. Mochalov K E et al ACS Nano 7 8953 (2013)
  54. Fischer T et al Nano Lett. 17 1559 (2017)
  55. Wolff G et al Biol. Cell 108 245 (2016)
  56. Wei Q et al ACS Nano 8 12725 (2014)
  57. Pavani S R P et al Proc. Natl. Acad. Sci. USA 106 2995 (2009)
  58. Volostnikov V G Usp. Fiz. Nauk 182 442 (2012); Volostnikov V G Phys. Usp. 55 412 (2012)
  59. Volostnikov V.G. i dr Izv. RAN, Ser. Fiz. 80 841 (2016); Volostnikov V G et al Bull. Russ. Acad. Sci. Phys. 80 766 (2016)
  60. Savost’yanov A O i dr Pis’ma ZhETF 107 426 (2018); Savostianov A O et al JETP Lett. 107 406 (2018)
  61. Mortensen K I et al Nature Meth. 7 377 (2010)
  62. Lv B et al Nature Commun. 9 1536 (2018)
  63. Koole R et al J. Am. Chem. Soc. 128 10436 (2006)
  64. Eremchev I Yu i dr Pis’ma ZhETF 108 26 (2018); Eremchev I Yu et al JETP Lett. 108 30 (2018)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions