Instruments and methods of investigation

Surface-plasma method for the production of negative ion beams

  a, b
a Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russian Federation
b Budker Institute of Nuclear Physics, Siberian Branch of the Russian Academy of Sciences, prosp. akad. Lavrenteva 11, Novosibirsk, 630090, Russian Federation

Increased interest in development of negative ions sources is related to the emergence of important applications of negative-ion beams. The list of those applications includes primarily tandem accelerators, including high-energy implantation and accelerator-based mass spectrometry, supercollimated beams, charge-exchange injection into cyclic accelerators and storage rings, charge-exchange extraction of beams from cyclotron, high-energy neutrals in plasma systems, charge-exchange of beams distribution, etc. Development of the sources of negative ions and their usage in academic research and industry are reviewed. Physical bases and designs of surface-plasma sources of negative ions alongside the history of their development are presented.

Fulltext pdf (1.7 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2019.04.038558
Keywords: surface-plasma method, surface-plasma source, work function, negative ions, cesium, RF discharge
PACS: 01.65.+g, 29.25.Ni, 52.80.Pi (all)
DOI: 10.3367/UFNe.2019.04.038558
Citation: Dudnikov V G "Surface-plasma method for the production of negative ion beams" Phys. Usp. 62 1233–1267 (2019)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 28th, February 2018, revised: 16th, February 2019, 17th, April 2019

Оригинал: Дудников В Г «Поверхностно-плазменный метод получения пучков отрицательных ионов» УФН 189 1315–1351 (2019); DOI: 10.3367/UFNr.2019.04.038558

References (101) Cited by (15) Similar articles (13) ↓

  1. V.G. Dudnikov “Charge exchange injection into accelerators and storage rings62 405–412 (2019)
  2. P. Mazarov, V.G. Dudnikov, A.B. Tolstoguzov “Electrohydrodynamic emitters of ion beams63 1219–1255 (2020)
  3. A.E. Ieshkin, A.B. Tolstoguzov et alGas-dynamic sources of cluster ions for basic and applied research65 677–705 (2022)
  4. Yu.A. Plis, L.M. Soroko “The current state of the physics and technology of obtaining polarized particle beams15 318–339 (1972)
  5. V.P. Ponomarenko “Cadmium mercury telluride and the new generation of photoelectronic devices46 629–644 (2003)
  6. Yu.P. Raizer “High-frequency high-pressure induction discharge and the electrodeless plasmotron12 777–791 (1970)
  7. A.A. Ivanov, A.N. Smirnov et alAccelerator-based neutron source for boron neutron capture therapy65 834–851 (2022)
  8. M.D. Gabovich “Liquid-metal ion emitters26 447–455 (1983)
  9. V.G. Lukin, O.G. Khvostenko “Negative ion adsorption by the ion source surface as a factor influencing ion lifetime measurements60 911–930 (2017)
  10. A.D. Pogrebnjak, A.G. Ponomarev et alApplication of micro- and nanoprobes to the analysis of small-sized 3D materials, nanosystems, and nanoobjects55 270–300 (2012)
  11. V.M. Petrov, P.M. Agruzov et alBroadband integrated optical modulators: achievements and prospects64 722–739 (2021)
  12. S.A. Pshenichnyuk, N.L. Asfandiarov et alState of the art in dissociative electron attachment spectroscopy and its prospects65 163–188 (2022)
  13. R.A. Salimov “High-energy electron accelerators for industrial applications43 189 (2000)

The list is formed automatically.

© 1918–2023 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions