Instruments and methods of investigation

Ultrahigh field magnetic resonance imaging: new frontiers and possibilities in human imaging

 a,  a,  a,  a,  a,  b,  a, c,  a,  a
a St.Petersburg National Research University of Information Technologies, Mechanics and Optics, ul. Sablinskaya14, St.Petersburg, 197101, Russian Federation
b Almazov National Medical Research Centre of the Ministry of Health of the Russian Federation, Akkuratova str. 2, St. Petersburg, 197341, Russian Federation
c School of Electrical Engineering, Aalto University, PO Box 11000, Aalto, FI-00076, Finland

Increasing strength of the static magnetic field is the main trend in modern human magnetic resonance imaging (MRI). Performing MRI in ultrahigh fields (7 T or more) involves many effects both enhancing and deteriorating the image quality, and some effects previously unobservable in weaker fields. We review the main impacts of using ultrahigh fields in human MRI, including new challenges and the solutions proposed. We also discuss new magnetic-resonance scan methods that were unavailable with lower field strength (below 7 T).

Keywords: magnetic resonance imaging, metamaterials, NMR spectroscopy, image processing
PACS: 07.57.Pt, 87.61.−c (all)
DOI: 10.3367/UFNe.2018.12.038505
Citation: Zubkov M A, Andreychenko A E, Kretov E I, Solomakha G A, Melchakova I V, Fokin V A, Simovskii C R, Belov P A, Slobozhanyuk A P "Ultrahigh field magnetic resonance imaging: new frontiers and possibilities in human imaging" Phys. Usp. 62 1214–1232 (2019)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 31st, August 2018, revised: 18th, December 2018, 19th, December 2018

:   ,   ,   ,   ,   ,   ,   ,   ,    «- : » 189 1293–1314 (2019); DOI: 10.3367/UFNr.2018.12.038505

© 1918–2020 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions