Issues

 / 

2003

 / 

August

  

Reviews of topical problems


Defect-impurity engineering in implanted silicon

 a,  b
a Department of Physics, Belarussian State University, prosp. F. Skoriny 4, Minsk, 220050, Belarus
b A.N. Sevchenko Research Institute of Applied Physics Problems, Belarussian State University, pr. Kurchatova 7, Minsk, 220064, Belarus

The basic results of the studies of defect-impurity interaction in implanted silicon are presented. Factors affecting the way in which quasichemical reactions proceed — namely, temperature, level of ionization, and internal electric and elastic-stress fields — are analyzed. Methods for suppressing residual damage effects (rodlike defects, dislocation loops), and schemes for reducing the impurity diffusivity and for gettering metallic impurities in implanted silicon are considered. Examples of the practical realization of defect-impurity engineering are presented and discussed.

Fulltext pdf (1.4 MB)
Fulltext is also available at DOI: 10.1070/PU2003v046n08ABEH001371
PACS: 61.72.Cc, 61.72.Tt, 61.72.Yx (all)
DOI: 10.1070/PU2003v046n08ABEH001371
URL: https://ufn.ru/en/articles/2003/8/b/
000187205200002
Citation: Chelyadinskii A R, Komarov F F "Defect-impurity engineering in implanted silicon" Phys. Usp. 46 789–820 (2003)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Челядинский А Р, Комаров Ф Ф «Дефектно-примесная инженерия в имплантированном кремнии» УФН 173 813–846 (2003); DOI: 10.3367/UFNr.0173.200308b.0813

References (330) Cited by (26) ↓ Similar articles (20)

  1. Kovalchuk N S, Marudo Yu A et al High Temp Mat Proc 26 59 (2022)
  2. ODZAEV V, PRASALOVICH U et al HERALD OF POLOTSK STATE UNIVERSITY. Series S FUNDAMENTAL SCIENCES 39 65 (2022)
  3. Odzaev V B, Pyatlitski A N et al Vescì Akademìì Navuk Belarusì. Seryâ Fizika-matematyčnyh Navuk 57 232 (2021)
  4. Nikolskaya A, Korolev D et al Nuclear Instruments And Methods In Physics Research Section B: Beam Interactions With Materials And Atoms 472 32 (2020)
  5. Bogatov N, Grigoryan L et al J. Phys.: Conf. Ser. 1679 032077 (2020)
  6. Borisov A M, Kazakov V A et al J. Synch. Investig. 13 306 (2019)
  7. Agafonov Y A, Bogatov N M et al J. Synch. Investig. 12 499 (2018)
  8. Khuchua N, Tigishvili M et al Ion Beam Applications Chapter 7 (2018)
  9. Herega A The Selected Models of the Mesostructure of Composites SpringerBriefs In Physics Chapter 3 (2018) p. 17
  10. Makarenko L F, Lastovskii S B et al 123 (16) (2018)
  11. Odzhaev V B, Panfilenko A K et al Vescì Akademìì Navuk Belarusì. Seryâ Fizika-tehničnyh Navuk 63 244 (2018)
  12. Tigishvili M, Khuchua N et al Phys. Status Solidi C 14 (7) (2017)
  13. Bazarov V V, Nuzhdin V I et al J Appl Spectrosc 83 47 (2016)
  14. Poklonski N A, Gorbachuk N I et al Modern Electronic Materials 2 48 (2016)
  15. Khuchua N, Tigishvili M et al SSP 242 374 (2015)
  16. Litovchenko V G, Melnik V P, Romanjuk B M Ukr. J. Phys. 60 64 (2015)
  17. Rudakov V I, Ovcharov V V et al Russ Microelectron 43 284 (2014)
  18. Michel Ju, Koester S et al Series In Optics And Optoelectronics Vol. Handbook of Silicon PhotonicsPhotodetectors20130577 (2013) p. 479
  19. Poklonski N A, Gorbachuk N I et al Acta Phys. Pol. A 123 926 (2013)
  20. Poklonski N A, Gorbachuk N I et al Microelectronics Reliability 50 813 (2010)
  21. Olikh O Ya Semiconductors 43 745 (2009)
  22. Ovcharov V V, Rudakov V I J. Synch. Investig. 3 639 (2009)
  23. Poklonski N A, Gorbachuk N I et al Nuclear Instruments And Methods In Physics Research Section B: Beam Interactions With Materials And Atoms 266 5007 (2008)
  24. Extended Defects in Semiconductors 1 5 (2007) p. 412
  25. Dolgolenko A P Semicond. Phys. Quantum Electron. Optoelectron. 10 4 (2007)
  26. Olikhovsky S J, Belova M M, Kochelab Y V Usp. Fiz. Met. 7 135 (2006)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions