Reviews of topical problems

Dynamical properties and energy landscape of simple globular proteins

Semenov Institute of Chemical Physics, Russian Academy of Sciences, ul. Kosygina, 4, Moscow, 119991, Russian Federation

Analysis of dynamic properties of a simple globular protein, myoglobin, has demonstrated that it possesses a hierarchically organized energy landscape. It shows two types of specific protein motions, besides vibrations: 1) individual motions of small atomic groups — transitions between conformational substates (CS) of the lower tier 2, and 2) cooperative motions of secondary structure elements ( α-helices) — transitions between CS of the upper tier 1. The profile of macromolecule dynamic properties is highly heterogeneous. Only vibrations occur near the active center. The number of CS grows towards the periphery where specific type 1 and 2 motions become predominant. Such a picture is consistent with the concept of a protein as ’a random copolymer slightly edited in the vicinity of the active center’.

Fulltext is available at IOP
PACS: 87.10.+e, 87.15.By, 87.15.He, 87.80.−y (all)
DOI: 10.1070/PU2002v045n11ABEH001145
Citation: Krupyanskii Yu F, Gol’danskii V I "Dynamical properties and energy landscape of simple globular proteins" Phys. Usp. 45 1131–1151 (2002)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Крупянский Ю Ф, Гольданский В И «Динамические свойства и энергетичесий ландшафт простых глобулярных белков» УФН 172 1247–1269 (2002); DOI: 10.3367/UFNr.0172.200211b.1247

References (141) Cited by (12) Similar articles (20) ↓

  1. V.I. Gol’danskii, V.V. Kuz’min “Spontaneous breaking of mirror symmetry in nature and the origin of life32 1–29 (1989)
  2. M.D. Frank-Kamenetskii, V.V. Anshelevich, A.V. Lukashin “Polyelectrolyte model of DNA30 317–330 (1987)
  3. G.R. Ivanitskii, A.B. Medvinskii et alFrom Maxwell’s demon to the self-organization of mass transfer processes in living systems41 1115–1126 (1998)
  4. B.N. Belintsev “Dissipative structures and the problem of biological pattern formation26 775–800 (1983)
  5. D.S. Chernavskii “The origin of life and thinking from the viewpoint of modern physics43 151–176 (2000)
  6. H.D. Abarbanel, M.I. Rabinovich et alSynchronisation in neural networks39 337–362 (1996)
  7. M.V. Vol’kenshtein “The essence of biological evolution27 515–537 (1984)
  8. F.I. Ataullakhanov, V.I. Zarnitsyna et alA new class of stopping self-sustained waves: a factor determining the spatial dynamics of blood coagulation45 619–636 (2002)
  9. Yu.L. Klimontovich “Nonlinear Brownian motion37 737–766 (1994)
  10. V.N. Pokrovskii “Low-frequency dynamics of dilute solutions of linear polymers37 375–391 (1994)
  11. V.A. Kovarskii “Quantum processes in biological molecules. Enzyme catalysis42 797–815 (1999)
  12. V.K. Vanag “Study of spatially extended dynamical systems using probabilistic cellular automata42 413–434 (1999)
  13. A.Yu. Grosberg “Disordered polymers40 125–158 (1997)
  14. A.S. Davydov “Solitons in quasi-one-dimensional molecular structures25 898–918 (1982)
  15. M.A. Tsyganov, V.N. Biktashev et alWaves in systems with cross-diffusion as a new class of nonlinear waves50 263–286 (2007)
  16. Yu.M. Romanovskii, V.A. Teplov “The physical bases of cell movement. The mechanisms of self-organisation of amoeboid motility38 521–542 (1995)
  17. G.R. Ivanitskii, A.B. Medvinskii, M.A. Tsyganov “From the dynamics of population autowaves generated by living cells to neuroinformatics37 961–989 (1994)
  18. V.N. Binhi, A.V. Savin “Effects of weak magnetic fields on biological systems: physical aspects46 259–291 (2003)
  19. G.R. Ivanitskii, A.B. Medvinskii, M.A. Tsyganov “From disorder to order as applied to the movement of micro-organisms34 (4) 289–316 (1991)
  20. V.V. Lobzin, V.R. Chechetkin “Order and correlations in genomic DNA sequences. The spectral approach43 55–78 (2000)

The list is formed automatically.

© 1918–2020 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions