Issues

 / 

2002

 / 

November

  

Methodological notes


An invariant formulation of the potential integration method for the vortical equation of motion of a material point


Alexeev Nizhnii Novgorod State Technical University, Minina str. 24, Nizhnii Novgorod, 603600, Russian Federation

A relativistic procedure for deriving the kinetic part of the generalized Euler equation is proposed as an argument to justify the application of the vortical equation of motion to the solution of classical discrete dynamics problems. An invariant formulation of the potential integration method for the vortical equation of motion is given for a definite class of two-dimensional motions. To demonstrate the efficiency of the method, a number of well-known theorems on the dynamics of a material point are proved. A new result of the study is the fact that zero-energy hyperelliptic motions are related to the field of ’multiplicative’ type forces.

Fulltext is available at IOP
PACS: 45.20.−d, 45.50.Pk (all)
DOI: 10.1070/PU2002v045n11ABEH001171
URL: https://ufn.ru/en/articles/2002/11/c/
Citation: Kukushkin A V "An invariant formulation of the potential integration method for the vortical equation of motion of a material point" Phys. Usp. 45 1153–1164 (2002)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Кукушкин А В «Инвариантная редакция потенциального метода интегрирования вихревого уравнения движения для материальной точки» УФН 172 1271–1282 (2002); DOI: 10.3367/UFNr.0172.200211c.1271

© 1918–2020 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions