Выпуски

 / 

2013

 / 

Октябрь

  

Обзоры актуальных проблем


Моделирование конфигурационных переходов в атомных системах

 а,  б
а Department of Chemistry, University of Chicago, 5735 South Ellis Ave., Chicago, Illinois, 60637, USA
б Объединенный институт высоких температур РАН, ул. Ижорская 13/19, Москва, 127412, Российская Федерация

Конфигурационные переходы в атомных системах, т.е. переходы с изменением геометрической конфигурации ядер, включают в себя химические реакции, переходы между агрегатными состояниями атомной системы (фазовые переходы) и нанокаталитические процессы. Дан анализ конфигурационных переходов с точки зрения поведения поверхности потенциальной энергии (ППЭ) атомной системы, так что конфигурационный переход представляется как переход между локальными минимумами ППЭ. Показано, что для анализа сложных атомных систем в принципе подходит теория функционала плотности (DFT), однако, будучи основанной на современных пакетах компьютерных программ, DFT не может использоваться даже для более простых систем, таких как тяжёлые атомы или металлические кластеры. Статическое определение энергетических параметров не позволяет надёжно анализировать динамику рассматриваемых переходов. В частности, энергия активации химического процесса заметно отличается от высоты барьера, разделяющего пространственные конфигурации, относящиеся к начальному и конечному состояниям перехода. Например, расчёт на основе статических моделей, включающих DFT, даёт температуру плавления кластеров с парным взаимодействием атомов вдвое бóльшую по сравнению с температурой, полученной на основе динамических моделей с учётом теплового движения атомов. Поэтому оптимальное описание конфигурационных переходов в сложной атомной системе может быть основано на объединении DFT для определения ППЭ этой системы с методом молекулярной динамики для учёта теплового движения атомов в этой системе.

Текст pdf (1,1 Мб)
English fulltext is available at DOI: 10.3367/UFNe.0183.201310b.1029
PACS: 36.40.−c, 36.40.Ei, 64.70.D−, 71.15.Mb, 81.16.Hc, 82.30.−b (все)
DOI: 10.3367/UFNr.0183.201310b.1029
URL: https://ufn.ru/ru/articles/2013/10/b/
000329313100002
2013PhyU...56..973B
Цитата: Берри Р С, Смирнов Б М "Моделирование конфигурационных переходов в атомных системах" УФН 183 1029–1057 (2013)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Поступила: 21 января 2013, доработана: 6 апреля 2013, 16 апреля 2013

English citation: Berry R S, Smirnov B M “Modeling of configurational transitions in atomic systemsPhys. Usp. 56 973–998 (2013); DOI: 10.3367/UFNe.0183.201310b.1029

Список литературы (309) Статьи, ссылающиеся на эту (6) Похожие статьи (20) ↓

  1. Р.С. Берри, Б.М. Смирнов «Фазовые переходы в кластерах различных типов» УФН 179 147–177 (2009)
  2. Б.М. Смирнов «Металлические наноструктуры: от кластеров к нанокатализу и сенсорам» УФН 187 1329–1364 (2017)
  3. Р.С. Берри, Б.М. Смирнов «Фазовые переходы и сопутствующие явления в простых системах связанных атомов» УФН 175 367–411 (2005)
  4. Г.Н. Макаров «Экспериментальные методы определения температуры и теплоты плавления кластеров и наночастиц» УФН 180 185–207 (2010)
  5. Г.Н. Макаров «Кинетические методы определения температуры кластеров и наночастиц в молекулярных пучках» УФН 181 365–387 (2011)
  6. Б.М. Смирнов «Процессы с участием кластеров и малых частиц в буферном газе» УФН 181 713–745 (2011)
  7. Б.М. Смирнов «Плавление кластеров с парным взаимодействием атомов» УФН 164 1165–1185 (1994)
  8. Б.М. Смирнов «Скейлинг в атомной и молекулярной физике» УФН 171 1291–1315 (2001)
  9. Г.Н. Макаров «Кластерная температура. Методы ее измерения и стабилизации» УФН 178 337–376 (2008)
  10. Б.М. Смирнов «Кластеры с плотной упаковкой и заполненными оболочками» УФН 163 (10) 29–56 (1993)
  11. Д.К. Белащенко «Компьютерное моделирование жидких металлов» УФН 183 1281–1322 (2013)
  12. Д.К. Белащенко «Имеет ли модель погружённого атома предсказательную силу?» УФН 190 1233–1260 (2020)
  13. Е.В. Холопов «Проблемы сходимости кулоновских и мультипольных сумм в кристаллах» УФН 174 1033–1060 (2004)
  14. Г.Н. Макаров «Лазерная ИК-фрагментация молекулярных кластеров: роль каналов ввода и релаксации энергии, влияние окружения, динамика фрагментации» УФН 187 241–276 (2017)
  15. Г.Н. Макаров «Применение лазеров в нанотехнологии: получение наночастиц и наноструктур методами лазерной абляции и лазерной нанолитографии» УФН 183 673–718 (2013)
  16. В.Н. Рыжов, Е.Е. Тареева и др. «Переход Березинского—Костерлица—Таулеса и двумерное плавление» УФН 187 921–951 (2017)
  17. Б.М. Смирнов «Системы атомов с короткодействующим взаимодействием» УФН 162 (12) 97–150 (1992)
  18. В.Н. Рыжов, Е.Е. Тареева и др. «Сложные фазовые диаграммы систем с изотропными потенциалами: результаты компьютерного моделирования» УФН 190 449–473 (2020)
  19. Б.М. Смирнов «Процессы в расширяющемся и конденсирующемся газе» УФН 164 665–703 (1994)
  20. Г.Н. Макаров «Низкоэнергетические методы молекулярного лазерного разделения изотопов» УФН 185 717–751 (2015)

Список формируется автоматически.

© Успехи физических наук, 1918–2024
Электронная почта: ufn@ufn.ru Телефоны и адреса редакции О журнале Пользовательское соглашение