Accepted articles

Reviews of topical problems


Optical quantum memory on atomic ensembles: physical principles, experiments and possibilities of application in a quantum repeater

 a,  a,  a,  a,  b, c,  d
a Kazan Quantum Center, Kazan National Research Technical University, K. Marx Str. 10, Kazan, 420111, Russian Federation
b Moscow Institute of Physics and Technology (National Research University), Institutskii per. 9, Dolgoprudny, Moscow Region, 141701, Russian Federation
c R&D Center JSC, Bolshoy Balkansky Lane 20, Moscow, 129090, Russian Federation
d Russian Academy of Sciences, China Branch of BRICS Institute of Future Networks, Shenzhen, China

We review protocols for atomic ensemble-based optical quantum memories and their experimental implementation. Our special focus is on quantum memories in rare-earth ions doped crystals with long optical and spin coherence lifetimes based on slow light and photon-echo. Current challenges and methods for obtaining high-performance quantum memory are outlined and critically analyzed. The strategies for improving optical quantum memory for application in optical quantum repeaters are discussed.

Keywords: optical quantum memory, two- and three-level atomic ensembles, optical and spin coherence, electromagnetically induced transparency, off-resonant Raman transition, Autler—Townes splitting, photon echo, crystals with rare earth ions, quantum repeater
DOI: 10.3367/UFNe.2024.06.039694
Citation: Moiseev S A, Minnegaliev M M, Gerasimov K I, Moiseev E S, Deev A D, Balega Yu Yu "Optical quantum memory on atomic ensembles: physical principles, experiments and possibilities of application in a quantum repeater" Phys. Usp., accepted

Received: 24th, April 2024, 10th, June 2024

Оригинал: Моисеев С А, Миннегалиев М М, Герасимов К И, Моисеев Е С, Деев А Д, Балега Ю Ю «Оптическая квантовая память на атомных ансамблях: физические принципы, эксперименты и возможности применения в квантовом повторителе» УФН, принята к публикации; DOI: 10.3367/UFNr.2024.06.039694

Similar articles (16) ↓

  1. V.E. Panchuk, Yu.Yu. Balega et alStudy of exoplanets by spectroscopic methodsPhys. Usp. 63 562–582 (2020)
  2. S.S. Gershtein, Yu.V. Petrov, L.I. Ponomarev “Muon catalysis and nuclear breedingSov. Phys. Usp. 33 (8) 591–615 (1990)
  3. A.V. Eletskii “Carbon nanotubes and their emission propertiesPhys. Usp. 45 369–402 (2002)
  4. D.D. Sukachev “Large quantum networksPhys. Usp. 64 1021–1037 (2021)
  5. G.V. Skrotskii, T.G. Izyumova “Optical orientation of atoms and its applicationsSov. Phys. Usp. 4 177–204 (1961)
  6. E.B. Aleksandrov “Optical manifestations of the interference of nondegenerate atomic statesSov. Phys. Usp. 15 436–451 (1973)
  7. V.A. Kizel’ “Optical activity and dissymmetry in living systemsSov. Phys. Usp. 23 277–295 (1980)
  8. I.V. Bargatin, B.A. Grishanin, V.N. Zadkov “Entangled quantum states of atomic systemsPhys. Usp. 44 597–616 (2001)
  9. V.A. Novikov “Nonperturbative QCD and supersymmetric QCDPhys. Usp. 47 109–116 (2004)
  10. A.G. Lundin, V.E. Zorin “Nuclear magnetic resonance in condensed matterPhys. Usp. 50 1053–1077 (2007)
  11. A.V. Eletskii, I.M. Iskandarova et alGraphene: fabrication methods and thermophysical propertiesPhys. Usp. 54 227–258 (2011)
  12. M.V. Davidovich “Hyperbolic metamaterials: production, properties, applications, and prospectsPhys. Usp. 62 1173–1207 (2019)
  13. V.V. Lider “Multilayer X-ray interference structuresPhys. Usp. 62 1063–1095 (2019)
  14. R.V. Jolos, E.A. Kolganova “Phase transitions in atomic nucleiPhys. Usp. 64 325–343 (2021)
  15. A.E. Hramov, N.S. Frolov et alFunctional networks of the brain: from connectivity restoration to dynamic integrationPhys. Usp. 64 584–616 (2021)
  16. D.I. Provorchenko, D.O. Tregubov et alLaser cooling of thulium atoms to the ground state in optical latticePhys. Usp., accepted

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions