Reviews of topical problems

Large quantum networks

University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada

Quantum networks that allow generating entangled states between distant qubits have enormous scientific and applied potential. They can be used for secure quantum cryptography and the teleportation of quantum states between cities and countries, in high-resolution astronomy, and in distributed quantum computing. The scattering of photons in an optical fiber and the difficulties in creating full-fledged quantum nodes impede the construction of large quantum networks. We review current approaches to the creation of such networks, with the emphasis on quantum repeaters intended for `compensating' losses in optical fibers. We also discuss methods for increasing the range of quantum cryptography systems without using quantum repeaters.

Fulltext pdf (1.2 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2020.11.038888
Keywords: quantum network, quantum cryptography, quantum repeater
PACS: 03.65.Ud, 03.67.−a, 42.50.Ex (all)
DOI: 10.3367/UFNe.2020.11.038888
Citation: Sukachev D D "Large quantum networks" Phys. Usp. 64 1021–1037 (2021)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 9th, June 2020, revised: 26th, November 2020, 26th, November 2020

Оригинал: Сукачёв Д Д «Протяжённые квантовые сети» УФН 191 1077–1094 (2021); DOI: 10.3367/UFNr.2020.11.038888

© 1918–2023 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions