Issues

 / 

2025

 / 

May

  

International year of quantum science and technology. Reviews of topical problems


Optical quantum memory in atomic ensembles: physical principles, experiments, and potential of application in a quantum repeater

  a,  a,  a,  a,  b, c,  d
a Kazan Quantum Center, Kazan National Research Technical University, K. Marx Str. 10, Kazan, 420111, Russian Federation
b Moscow Institute of Physics and Technology (National Research University), Institutskii per. 9, Dolgoprudny, Moscow Region, 141701, Russian Federation
c R&D Center JSC, Bolshoy Balkansky Lane 20, Moscow, 129090, Russian Federation
d Russian Academy of Sciences, China Branch of BRICS Institute of Future Networks, Shenzhen, China

We outline the physical principles of optical quantum memory in atomic ensembles, with the emphasis on protocols that have been successfully implemented experimentally. Among the protocols under consideration, prominence is given to the regularities of quantum memory on photon echo and slow light and to their implementations in crystals doped with rare-earth ions, which have a long quantum coherence lifetime on optical and spin transitions. We analyze the approaches and problems in achieving high efficiency and other practically significant parameters of quantum memory in real experimental conditions. Also discussed are ways to further improve optical quantum memory and the potential of its application in developing an optical quantum repeater.

Fulltext pdf (695 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2024.06.039694
Keywords: optical quantum memory, two- and three-level atomic ensembles, optical and spin coherence, electromagnet„ically induced transparency, off-resonant Raman transitions, Autler—Townes splitting, photon echo, crystals with rare-earth ions, quantum repeaters
PACS: 03.67.−a, 42.40.Md, 42.50.Ex (all)
DOI: 10.3367/UFNe.2024.06.039694
URL: https://ufn.ru/en/articles/2025/5/a/
001524725300001
2-s2.0-105008976012
2025PhyU...68..431M
Citation: Moiseev S A, Minnegaliev M M, Gerasimov K I, Moiseev E S, Deev A D, Balega Yu Yu "Optical quantum memory in atomic ensembles: physical principles, experiments, and potential of application in a quantum repeater" Phys. Usp. 68 431–451 (2025)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 24th, April 2024, 10th, June 2024

Оригинал: Моисеев С А, Миннегалиев М М, Герасимов К И, Моисеев Е С, Деев А Д, Балега Ю Ю «Оптическая квантовая память на атомных ансамблях: физические принципы, эксперименты и возможности применения в квантовом повторителе» УФН 195 455–477 (2025); DOI: 10.3367/UFNr.2024.06.039694

References (302) Cited by (7) Similar articles (20) ↓

  1. R.A. Akhmedzhanov, Yu.Yu. Balega et alQuantum repeaters: current research trends and latest achievementsPhys. Usp. 68 857–882 (2025)
  2. D.D. Sukachev “Large quantum networksPhys. Usp. 64 1021–1037 (2021)
  3. V.V. Kocharovsky, V.V. Zheleznyakov et alSuperradiance: the principles of generation and implementation in lasersPhys. Usp. 60 345–384 (2017)
  4. V.V. Zheleznyakov, V.V. Kocharovskii, V.V. Kocharovskii “Polarization waves and super-radiance in active mediaSov. Phys. Usp. 32 835–870 (1989)
  5. A.P. Alodjants, D.V. Tsarev et alQuantum optical metrologyPhys. Usp. 67 668–693 (2024)
  6. A.G. Lundin, V.E. Zorin “Nuclear magnetic resonance in condensed matterPhys. Usp. 50 1053–1077 (2007)
  7. A.V. Andreev “Optical superradiance: new ideas and new experimentsSov. Phys. Usp. 33 (12) 997–1020 (1990)
  8. D.N. Klyshko “Basic quantum mechanical concepts from the operational viewpointPhys. Usp. 41 885–922 (1998)
  9. M.B. Menskii “Concept of consciousness in the context of quantum mechanicsPhys. Usp. 48 389–409 (2005)
  10. I.V. Bargatin, B.A. Grishanin, V.N. Zadkov “Entangled quantum states of atomic systemsPhys. Usp. 44 597–616 (2001)
  11. E.A. Ekimov, M.V. Kondrin “Vacancy-impurity centers in diamond: perspectives of synthesis and applicationsPhys. Usp. 60 539–558 (2017)
  12. M.V. Davidovich “Hyperbolic metamaterials: production, properties, applications, and prospectsPhys. Usp. 62 1173–1207 (2019)
  13. S.Ya. Kilin “Quantum informationPhys. Usp. 42 435–452 (1999)
  14. S.A. Aseyev, B.N. Mironov et alStructural dynamics of thin-film materials: achievements, problems, prospectsPhys. Usp. 68 641–652 (2025)
  15. V.V. Klimov “Control of the emission of elementary quantum systems using metamaterials and nanometaparticlesPhys. Usp. 64 990–1020 (2021)
  16. K.A. Valiev “Quantum computers and quantum computationsPhys. Usp. 48 1–36 (2005)
  17. A.V. Belinskii, D.N. Klyshko “Interference of light and Bell’s theoremPhys. Usp. 36 (8) 653–693 (1993)
  18. Ya.A. Smorodinskii, A.L. Shelepin, L.A. Shelepin “Groups and probabilities at the foundations of quantum mechanicsSov. Phys. Usp. 35 (12) 1005–1051 (1992)
  19. R.V. Zakharov, O.V. Tikhonova “Photon correlations and features of nonclassical optical fields in a squeezed vacuum statePhys. Usp. 66 381–409 (2023)
  20. K.L. Koshelev, Z.F. Sadrieva et alBound states in the continuum in photonic structuresPhys. Usp. 66 494–517 (2023)

The list is formed automatically.

© 1918–2025 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions