Issues

 / 

2025

 / 

January

  

Reviews of topical problems


Problems in homoepitaxial growth of diamonds using CVD method and ways to solve them

  a, b,  b,  b,  b,  b,  b,  b
a Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation
b Institution "Project Center ITER", Kurchatov sq. 1, Building 3, Moscow, 123182, Russian Federation

The CVD technology of homoepitaxial growth of single-crystal diamond has experienced significant difficulties for more than a decade. Long-term morphologically stable epitaxy of the crystal is not possible: as the crystal grows, a surface relief develops; over time, polycrystals inevitably appear on the growth surface, a polycrystalline 'rim' grows on the edges, and structural perfection of the material is not achieved. Productive epitaxy on the {111} faces is impossible due to unavoidable twinning. Considered an achievement is the growth of 1—2 mm of epitaxial material in a single session on a well-prepared facet vicinal to (001). To obtain significant growth of a crystal, it is necessary to periodically extract it from the reactor, trim the polycrystalline rim along the perimeter, and re-polish the growth surface for a new growth session. The brilliant prospects of using CVD diamond are still very poorly realized. These problems urgently require a solution. It is now clear that the structural perfection of the material is inextricably linked with the achievement of morphologically stable epitaxial growth. To analyze the mechanism of growth of single-crystal diamond using the CVD method, a model of layered growth was used. It provided a description of such key components of the growth surface as sources of layered growth and a stairway of growth ledges. The morphological instability of layered growth is mainly due to (a) positive feedback related to the action of a boundary diffusion layer with a large concentration gradient of growth radicals and (b) the Ehrlich—Schwoebel barrier for the movement of adatoms over the growth step edge. Morphological instability of homoepitaxial diamond growth primarily manifests itself in the grouping of steps (with the formation of macrosteps), meandering of steps, emergence of hillocks and mounds, and formation of depressions. These destructive phenomena have been shown to arise and develop during epitaxy on the faces close to {100}. The development of the growth surface relief inevitably leads to the appearance of twins on it, i.e., to the breakdown of epitaxy. Diagnosing mechanisms of morphological instability of diamond epitaxy by means of the CVD method made it possible to suggest ways to eliminate it. They include: (a) the creation of controlled sources of layered growth; (b) the preparation of a growth ledge stairway by correct polishing of growth faces; (c) the choice of the optimal vicinal angle of growth surfaces; and (d) the selection of supersaturation conditions for morphologically stable operation of layered growth sources and the development of growth layers.

Fulltext pdf (12 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2024.06.039692
Keywords: synthetic diamond, epitaxy, CVD
PACS: 81.05.ug, 81.15.Aa, 81.15.Gh (all)
DOI: 10.3367/UFNe.2024.06.039692
URL: https://ufn.ru/en/articles/2025/1/c/
001424253700002
2-s2.0-86000142925
2025PhyU...68....3K
Citation: Khmelnitsky R A, Rodionov N B, Trapeznikov A G, Yartsev V P, Rodionova V P, Kirichenko A N, Krasilnikov A V "Problems in homoepitaxial growth of diamonds using CVD method and ways to solve them" Phys. Usp. 68 3–31 (2025)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 8th, December 2023, revised: 20th, May 2024, 9th, June 2024

Оригинал: Хмельницкий Р А, Родионов Н Б, Трапезников А Г, Ярцев В П, Родионова В П, Кириченко А Н, Красильников А В «Проблемы гомоэпитаксиального роста алмаза методом CVD и пути их решения» УФН 195 3–33 (2025); DOI: 10.3367/UFNr.2024.06.039692

References (333) Cited by (1) Similar articles (20) ↓

  1. R.A. Khmelnitskiy “Prospects for the synthesis of large single-crystal diamondsPhys. Usp. 58 134–149 (2015)
  2. A.A. Shiryaev “Diamond phase in space and the possibility of its spectroscopic detectionPhys. Usp. 67 561–576 (2024)
  3. E.A. Ekimov, M.V. Kondrin “Vacancy-impurity centers in diamond: perspectives of synthesis and applicationsPhys. Usp. 60 539–558 (2017)
  4. G.A. Malygin “Strength and plasticity of nanocrystalline materials and nanosized crystalsPhys. Usp. 54 1091–1116 (2011)
  5. Yu.B. Bolkhovityanov, O.P. Pchelyakov “GaAs epitaxy on Si substrates: modern status of research and engineeringPhys. Usp. 51 437–456 (2008)
  6. V.S. Vavilov “Diamond in solid state electronicsPhys. Usp. 40 15–20 (1997)
  7. A.A. Chernov “The spiral growth of crystalsSov. Phys. Usp. 4 116–148 (1961)
  8. A.G. Syromyatnikov, S.V. Kolesnikov et alFormation and properties of metallic atomic chains and wiresPhys. Usp. 64 671–701 (2021)
  9. I.K. Gainullin “Resonant charge transfer during ion scattering on metallic surfacesPhys. Usp. 63 888–906 (2020)
  10. B.M. Smirnov “Metal nanostructures: from clusters to nanocatalysis and sensorsPhys. Usp. 60 1236–1267 (2017)
  11. A.A. Ionin, S.I. Kudryashov, A.A. Samokhin “Material surface ablation produced by ultrashort laser pulsesPhys. Usp. 60 149–160 (2017)
  12. A.P. Serebrov “Fundamental interactions involving neutrons and neutrinos: reactor-based studies led by the Petersburg Nuclear Physics Institute (National Research Center "Kurchatov Institute") [PNPI (NRC KI)]Phys. Usp. 58 1074–1094 (2015)
  13. A.A. Shklyaev, M. Ichikawa “Extremely dense arrays of germanium and silicon nanostructuresPhys. Usp. 51 133–161 (2008)
  14. B.M. Smirnov “Generation of cluster beamsPhys. Usp. 46 589–628 (2003)
  15. A.V. Latyshev, A.L. Aseev “Monatomic steps on silicon surfacesPhys. Usp. 41 1015–1023 (1998)
  16. M. Birau, M.A. Krasil’nikov et alProblems in the theory of relativistic plasma microwave electronicsPhys. Usp. 40 975–992 (1997)
  17. V.V. Prokof’eva, V.P. Tarashchuk, N.N. Gor’kavyi “Satellites of asteroidsPhys. Usp. 38 623–649 (1995)
  18. V.S. Vorob’ev “Plasma arising during the interaction of laser radiation with solidsPhys. Usp. 36 (12) 1129–1157 (1993)
  19. O.M. Braun, V.K. Medvedev “Interaction between particles adsorbed on metal surfacesSov. Phys. Usp. 32 328–348 (1989)
  20. L.M. Blinov, E.I. Kats, A.A. Sonin “Surface physics of thermotropic liquid crystalsSov. Phys. Usp. 30 604–619 (1987)

The list is formed automatically.

© 1918–2025 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions