Issues

 / 

2025

 / 

January

  

Reviews of topical problems


Problems in homoepitaxial growth of diamonds using CVD method and ways to solve them

  a, b,  b,  b,  b,  b,  b,  b
a Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation
b Institution "Project Center ITER", Kurchatov sq. 1, Building 3, Moscow, 123182, Russian Federation

The CVD technology of homoepitaxial growth of single-crystal diamond has experienced significant difficulties for more than a decade. Long-term morphologically stable epitaxy of the crystal is not possible: as the crystal grows, a surface relief develops; over time, polycrystals inevitably appear on the growth surface, a polycrystalline 'rim' grows on the edges, and structural perfection of the material is not achieved. Productive epitaxy on the {111} faces is impossible due to unavoidable twinning. Considered an achievement is the growth of 1—2 mm of epitaxial material in a single session on a well-prepared facet vicinal to (001). To obtain significant growth of a crystal, it is necessary to periodically extract it from the reactor, trim the polycrystalline rim along the perimeter, and re-polish the growth surface for a new growth session. The brilliant prospects of using CVD diamond are still very poorly realized. These problems urgently require a solution. It is now clear that the structural perfection of the material is inextricably linked with the achievement of morphologically stable epitaxial growth. To analyze the mechanism of growth of single-crystal diamond using the CVD method, a model of layered growth was used. It provided a description of such key components of the growth surface as sources of layered growth and a stairway of growth ledges. The morphological instability of layered growth is mainly due to (a) positive feedback related to the action of a boundary diffusion layer with a large concentration gradient of growth radicals and (b) the Ehrlich—Schwoebel barrier for the movement of adatoms over the growth step edge. Morphological instability of homoepitaxial diamond growth primarily manifests itself in the grouping of steps (with the formation of macrosteps), meandering of steps, emergence of hillocks and mounds, and formation of depressions. These destructive phenomena have been shown to arise and develop during epitaxy on the faces close to {100}. The development of the growth surface relief inevitably leads to the appearance of twins on it, i.e., to the breakdown of epitaxy. Diagnosing mechanisms of morphological instability of diamond epitaxy by means of the CVD method made it possible to suggest ways to eliminate it. They include: (a) the creation of controlled sources of layered growth; (b) the preparation of a growth ledge stairway by correct polishing of growth faces; (c) the choice of the optimal vicinal angle of growth surfaces; and (d) the selection of supersaturation conditions for morphologically stable operation of layered growth sources and the development of growth layers.

Fulltext pdf (12 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2024.06.039692
Keywords: synthetic diamond, epitaxy, CVD
PACS: 81.05.ug, 81.15.Aa, 81.15.Gh (all)
DOI: 10.3367/UFNe.2024.06.039692
URL: https://ufn.ru/en/articles/2025/1/c/
001424253700002
2-s2.0-86000142925
2025PhyU...68....3K
Citation: Khmelnitsky R A, Rodionov N B, Trapeznikov A G, Yartsev V P, Rodionova V P, Kirichenko A N, Krasilnikov A V "Problems in homoepitaxial growth of diamonds using CVD method and ways to solve them" Phys. Usp. 68 3–31 (2025)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 8th, December 2023, revised: 20th, May 2024, 9th, June 2024

Оригинал: Хмельницкий Р А, Родионов Н Б, Трапезников А Г, Ярцев В П, Родионова В П, Кириченко А Н, Красильников А В «Проблемы гомоэпитаксиального роста алмаза методом CVD и пути их решения» УФН 195 3–33 (2025); DOI: 10.3367/UFNr.2024.06.039692

References (333) ↓ Cited by (1) Similar articles (20)

  1. DeVries R C, Badzian A, Roy R MRS Bull. 21 (2) 65 (1996)
  2. Spitsyn B V, Deryagin B V "Sposob narashchivaniya granei almaza (Method to grow diamond facets)" USSR Inventor’s Certificate No. 339134 dated 10.07.1956; Spitsyn B V, Deryagin B V Byull. Izobret. (17) 323 (1980)
  3. Eversole W G, Kenmore N Y US Patent 3030187, patented Apr. 17, 1962; https://patents.google.com/patent/US3030187A/en; Eversole W G, Kenmore N Y US Patent 3030188, patented Apr. 17, 1962; https://patents.google.com/patent/US3030188A/en
  4. Derjaguin B V et al J. Cryst. Growth 2 380 (1968)
  5. Spitsyn B V, Bouilov L L, Derjaguin; B V J. Cryst. Growth 52 219 (1981)
  6. Matsumoto S et al Jpn. J. Appl. Phys. 21 L183 (1982)
  7. Angus J C Diamond Relat. Mater. 49 77 (2014)
  8. Kasu M Prog. Cryst. Growth Charact. Mater. 62 317 (2016)
  9. Goodwin D G J. Appl. Phys. 74 6888 (1993)
  10. Derkaoui N et al J. Phys. D 47 205201 (2014)
  11. Gicquel A et al Comprehensive Hard Materials Vol. 3 (Ed.-in-Chief V K Sarin) (Oxford: Elsevier, 2014) p. 217
  12. Scott C D et al J. Thermophys. Heat Transfer 10 426 (1996)
  13. Harris S J, Goodwin D G J. Phys. Chem. 97 23 (1993)
  14. Krasnoperov L N et al J. Phys. Chem. 97 11787 (1993)
  15. Butler J E, Woodin R L Philos. Trans. R. Soc. London A 342 209 (1993)
  16. Brinza O et al Phys. Status Solidi A 204 2847 (2007)
  17. Gracio J J, Fan Q H, Madaleno J C J. Phys. D 43 374017 (2010)
  18. Wörner E, Wild C Comprehensive Hard Materials Vol. 3 (Ed.-in-Chief V K Sarin) (Oxford: Elsevier, 2014) p. 365
  19. Haubner R ChemTexts 7 10 (2021)
  20. Bradley C E et al Npj Quantum Inform. 8 122 (2022)
  21. Aharonovich I et al Adv. Mater. 24 OP54 (2012)
  22. Balmer R S et al J. Phys. Condens. Matter 21 364221 (2009)
  23. Chayahara A et al Synthesiology Engl. Ed. 3 259 (2010)
  24. Khmelnitskiy R A Phys. Usp. 58 134 (2015); Khmelnitskiy R A Usp. Fiz. Nauk 185 143 (2015)
  25. Tallaire A et al Phys. Status Solidi A 202 2059 (2005)
  26. Tallaire A et al Diamond Relat. Mater. 14 249 (2005)
  27. Mallik A K J. Coat. Sci. Tech. 3 75 (2016)
  28. Schwander M, Partes K Diamond Relat. Mater. 20 1287 (2011)
  29. Liu J et al Diamond Relat. Mater. 46 42 (2014)
  30. Sutcu L F et al J. Appl. Phys. 71 5930 (1992)
  31. Nad S, Charris A, Asmussen J Appl. Phys. Lett. 109 162103 (2016)
  32. Eaton-Magaña S, Shigley J E Gems Gemol. 52 222 (2016)
  33. Polushin N I et al Processes 8 666 (2020)
  34. Achard J et al Phys. Status Solidi A 9 1651 (2012)
  35. Butler J E, Oleynik I Philos. Trans. R. Soc. London A 366 295 (2008)
  36. Delclos S et al Diamond Relat. Mater. 9 346 (2000)
  37. Gu Y et al Diamond Relat. Mater. 24 210 (2012)
  38. Chayahara A et al Diamond Relat. Mater. 13 1954 (2004)
  39. Zhao Y et al Cryst. Res. Technol. 53 1800055 (2018)
  40. Wu G, Chen M-H, Liao J Diamond Relat. Mater. 65 144 (2016)
  41. Nad S, Asmussen J Diamond Relat. Mater. 66 36 (2016)
  42. Charris A, Nad S, Asmussen J Diamond Relat. Mater. 76 58 (2017)
  43. Feng M et al J. Cryst. Growth 603 127011 (2023)
  44. Nad S, Gu Y, Asmussen J Diamond Relat. Mater. 60 26 (2015)
  45. Yang B et al J. Mater. Sci. 55 17072 (2020)
  46. Nagase M et al Jpn. J. Appl. Phys. 51 070202 (2012)
  47. Li F et al Crystals 7 114 (2017)
  48. Li Y et al Diamond Relat. Mater. 101 107574 (2020)
  49. Silva F et al Diamond Relat. Mater. 18 683 (2009)
  50. McCauley T S, Vohra Y K Appl. Phys. Lett. 66 1486 (1995)
  51. Chen J et al J. Cryst. Growth 484 1 (2018)
  52. Gicquel A et al J. Phys. III France 6 1167 (1996)
  53. Gicquel A et al Chem. Phys. 398 239 (2012)
  54. Derkaoui N et al J. Appl. Phys. 115 233301 (2014)
  55. Grotjohn T et al Diamond Relat. Mater. 14 288 (2005)
  56. Shu G et al J. Cryst. Growth 486 104 (2018)
  57. Hassouni K, Silva F, Gicquel A J. Phys. D 43 153001 (2010)
  58. Angus J C et al Philos. Trans. R. Soc. London A 342 195 (1993)
  59. Lombardi G et al Plasma Sources Sci. Technol. 14 440 (2005)
  60. Lombardi G et al J. Appl. Phys. 98 053303 (2005)
  61. Muchnikov A B et al Diamond Relat. Mater. 19 432 (2010)
  62. Ma Z et al Diamond Relat. Mater. 66 135 (2016)
  63. Gordon M H et al J. Appl. Phys. 89 1544 (2001)
  64. Tallaire A et al C.R. Physique 14 169 (2013)
  65. Sunagawa I Crystals. Growth, Morphology, And Perfection (Cambridge: Cambridge Univ. Press, 2005)
  66. Anthony T R Vacuum 41 1356 (1990)
  67. Wang X et al Materials 12 3953 (2019)
  68. Battaile C C et al J. Chem. Phys. 111 4291 (1999)
  69. Hei L F et al Diamond Relat. Mater. 30 77 (2012)
  70. Miyoshi K "Chemical-Vapor-Deposited Diamond Film" NASA/TM—1999-107249 (Hanover, MD: NASA Center for AeroSpace Information, 1999)
  71. Brinza O et al Phys. Status Solidi A 205 2114 (2008)
  72. Silva F et al J. Cryst. Growth 310 187 (2008)
  73. Silva F et al Diamond Relat. Mater. 17 1067 (2008)
  74. Janssen G et al J. Cryst. Growth 125 42 (1992)
  75. Snail K A et al J. Cryst. Growth 137 676 (1994)
  76. Li S et al Carbon 145 273 (2019)
  77. Khmelnitsky R A, Talipov N Kh, Chucheva G V Sinteticheskii Almaz Dlya Elektroniki I Optiki (Synthetic Diamond For Electronics And Optics) (Moscow: IKAR, 2017)
  78. Achard J et al Diamond Relat. Mater. 16 685 (2007)
  79. Asmussen J Appl. Phys. Lett. 93 031502 (2008)
  80. Lyu J et al Surf. Eng. 35 91 (2019)
  81. van Enckevort W J P et al Surf. Coat. Technol. 47 39 (1991)
  82. Takeuchi D et al Diamond Relat. Mater. 9 231 (2000)
  83. Okushi H Diamond Relat. Mater. 10 281 (2001)
  84. Ri S-G et al J. Cryst. Growth 235 300 (2002)
  85. Bauer T et al Diamond Relat. Mater. 14 266 (2005)
  86. Bauer T et al Phys. Status Solidi A 203 3056 (2006)
  87. Miyatake H et al Diamond Relat. Mater. 16 679 (2007)
  88. Naamoun M et al Phys. Status Solidi A 210 1985 (2013)
  89. Li H Thin Films And Epitaxy (Handbook of Crystal Growth, Second ed., Vol. IIIA Basic Techniques, Eds T F Kuech) (Amsterdam: Elsevier, 2015) p. 605
  90. Davies N et al J. Phys. Conf. Ser. 281 012026 (2011)
  91. Ohmagari S et al Diamond Relat. Mater. 48 19 (2014)
  92. Maida O et al Diamond Relat. Mater. 17 435 (2008)
  93. Tallaire A et al Diamond Relat. Mater. 33 71 (2013)
  94. Li Y et al Vacuum 206 111529 (2022)
  95. Schreck M et al J. Appl. Phys. 127 125102 (2020)
  96. Chatei H et al Diamond Relat. Mater. 6 505 (1997)
  97. Hassouni K et al Plasma Sources Sci. Technol. 10 61 (2001)
  98. Brinza O et al Phys. Status Solidi A 204 2847 (2007)
  99. Muchnikov A B et al Diamond Relat. Mater. 20 1225 (2011)
  100. Vikharev A M et al J. Phys. D 45 395202 (2012)
  101. Mokuno Y et al Diamond Relat. Mater. 19 128 (2010)
  102. Yamada H et al Materials Challenges And Testing For Manufacturing, Mobility, Biomedical Applications And Climate (Eds W Udomkichdecha et al) (Cham: Springer Intern. Publ., 2014) p. 97
  103. Aida H et al Diamond Relat. Mater. 75 34 (2017)
  104. Girshick S L et al Plasma Chem. Plasma Process. 13 169 (1993)
  105. Tallaire A et al Phys. Status Solidi A 208 2028 (2011)
  106. Hemawan K W, Hemley R J J. Vac. Sci. Technol. A 33 061302 (2015)
  107. Bolshakov A P et al Diamond Relat. Mater. 62 49 (2016)
  108. Yamada H, Chayahara A, Mokuno Y Diamond Relat. Mater. 87 143 (2018)
  109. Muehle M et al Diamond Relat. Mater. 79 150 (2017)
  110. Bolshakov A P et al Mater. Today Commun. 25 101635 (2020)
  111. Williams O A, Jackman R B Diamond Relat. Mater. 13 557 (2004)
  112. Issaoui R et al Phys. Status Solidi A 208 2023 (2011)
  113. Liu J et al Vacuum 155 391 (2018)
  114. Issaoui R et al Diamond Relat. Mater. 94 88 (2019)
  115. Yokota Y et al Diamond Relat. Mater. 12 295 (2003)
  116. Zhang Q et al Diamond Relat. Mater. 20 496 (2011)
  117. Belousov M E et al Chem. Vapor Deposition 18 302 (2012)
  118. Han X et al Materials 13 4510 (2020)
  119. Yamada H et al Diamond Relat. Mater. 15 1383 (2006)
  120. Liu J et al Diamond Relat. Mater. 46 42 (2014)
  121. Janssen G et al Diamond Relat. Mater. 1 789 (1992)
  122. Sergeichev K F, Lukina N A, Arutyunyan N R Plasma Phys. Rep. 45 551 (2019); Sergeichev K F, Lukina N A, Arutyunyan N R Fiz. Plazmy 45 513 (2019)
  123. Martineau P et al Phys. Status Solidi C 6 1953 (2009)
  124. Martineau P M et al J. Phys. Condens. Matter 21 364205 (2009)
  125. Feng Z B et al Diamond Relat. Mater. 19 1453 (2010)
  126. Umezava H et al Diamond Relat. Mater. 20 523 (2011)
  127. Willems B, Tallaire A, Achard J Diamond Relat. Mater. 41 25 (2014)
  128. Mayr M et al Phys. Status Solidi A 211 2257 (2014)
  129. Boussadi A et al Diamond Relat. Mater. 83 162 (2018)
  130. Stehl C et al Appl. Phys. Lett. 103 151905 (2013)
  131. Yan C et al Proc. Natl. Acad. Sci. USA 99 12523 (2002)
  132. Tallaire A et al Diamond Relat. Mater. 15 1700 (2006)
  133. Su Y et al J. Cryst. Growth 351 51 (2012)
  134. Liang Q et al Cryst. Growth Des. 14 3234 (2014)
  135. Yamada H, Chayahara A, Mokuno Y Diamond Relat. Mater. 101 107652 (2020)
  136. Liang Q et al Diamond Relat. Mater. 18 698 (2009)
  137. Meng Y et al Proc. Natl. Acad. Sci. USA 105 17620 (2008)
  138. Liang Q et al J. Superhard Mater. 35 195 (2013)
  139. Mokuno Y et al Diamond Relat. Mater. 14 1743 (2005)
  140. Muehle M et al Diamond Relat. Mater. 42 8 (2014)
  141. Eaton-Magaña S et al Minerals 11 177 (2021)
  142. Tallaire A et al Diamond Relat. Mater. 33 71 (2013)
  143. Tallaire A et al Diamond Relat. Mater. 20 875 (2011)
  144. Isberg J et al Science 297 1670 (2002)
  145. Friel I et al Diamond Relat. Mater. 18 808 (2009)
  146. Martineau P M et al J. Phys. Condens. Matter 21 364205 (2009)
  147. Teraji T Phys. Status Solidi A 203 3324 (2006)
  148. Goodwin D G, Butler J E Handbook Of Industrial Diamonds And Diamond Films (Eds M A Prelas, G Popovici, L K Biglow) (Boca Raton, FL: CRC Press, 1997) p. 527
  149. Dischler B, Wild C (Eds) Low-Pressure Synthetic Diamond. Manufacturing And Applications (Berlin: Springer, 1998)
  150. Nazare M H, Neves A J (Eds) Properties, Growth And Applications Of Diamond (Emis Datareviews Ser.) Vol. 26 (London: INSPEC, 26)
  151. Asmussen J, Reinhard D K (Eds) Diamond Films Handbook (New York: M. Dekker, 2002)
  152. Nebel C E, Ristein J (Eds) Thin-Film Diamond I (Semiconductors and Semimetals) Vol. 76 (New York: Academic Press, 2003)
  153. Teraji T Physics And Applications Of CVD Diamond (Eds S Koizumi, C Nebel, M Nesladek) (Weinheim: Wiley-VCH, 2008) p. 29
  154. Butler J E, Cheesman A, Ashfold M N R "Recent progress in the understanding of CVD growth of diamond" CVD Diamond For Electronic Devices And Sensors (Eds R S Sussmann) (Chichester: J. Wiley, 2009)
  155. Butler J E et al J. Phys. Condens. Matter 21 364201 (2009)
  156. Friel I Optical Engineering Of Diamond (Eds R P Mildren, J R Rabeau) (Weinheim: Wiley-VCH Verlag, 2013) p. 35
  157. Tokuda N Novel Aspects Of Diamond. From Growth To Applications (Topics in Applied Physics) Vol. 121 (Eds N Yang) (Heidelberg: Springer, 2015) p. 1
  158. Koizumi S, Umezawa H, Pernot J, Suzuki M (Eds) Power Electronics Device Applications Of Diamond Semiconductors (Duxford: Woodhead Publ., 2018)
  159. May P W Philos. Trans. R. Soc. London A 358 473 (2000)
  160. Arnault J-C, Saada S, Ralchenko V Phys. Status Solidi Rapid Res. Lett. 16 2100354 (2022)
  161. Hayashi K et al Diamond Relat. Mater. 5 1002 (1996)
  162. Hayashi K et al Appl. Phys. Lett. 68 1220 (1996)
  163. Tyagi P K et al Diamond Relat. Mater. 15 304 (2006)
  164. Harris S J, Belton D N Thin Solid Films 212 193 (1992)
  165. Okushi H Diamond Relat. Mater. 10 281 (2001)
  166. Lukins P B, Zareie M H, Khachan J Appl. Phys. Lett. 78 1520 (2001)
  167. Godbole V P et al Appl. Phys. Lett. 71 2626 (1997)
  168. Jeong H-C, Williams E D Surf. Sci. Rep. 34 171 (1999)
  169. Uwaha M Prog. Cryst. Growth Charact. Mater. 62 58 (2016)
  170. Frenklach M, Skokov S J. Phys. Chem. B 101 3025 (1997)
  171. Ibach H Physics Of Surfaces And Interfaces (Berlin: Springer-Verlag, 2006)
  172. Mankelevich Yu A, May P W Diamond Relat. Mater. 17 1021 (2008)
  173. Eckert M, Neyts E, Bogaerts A Cryst. Growth Des. 10 4123 (2010)
  174. Butler J E et al J. Phys. Condens. Matter 21 364201 (2009)
  175. Harris S J Appl. Phys. Lett. 56 2298 (1990)
  176. Harris S J, Belton D N Thin Solid Films 212 193 (1992)
  177. Tsuno T et al Appl. Phys. Lett. 64 572 (1994)
  178. Kuang Y et al Appl. Phys. Lett. 67 3721 (1995)
  179. Bobrov K et al Phys. Rev. B 68 195416 (2003)
  180. Foord J S, Loh K P, Jackman R B Surf. Sci. 399 1 (1998)
  181. Harris S J, Goodwin D G J. Phys. Chem. 97 23 (1993)
  182. Tamura H et al Phys. Rev. B 62 16995 (2000)
  183. Krasnoperov L N et al J. Phys. Chem. 97 11787 (1993)
  184. Battaile C C, Srolovitz D J, Butler J E J. Cryst. Growth 194 353 (1998)
  185. Skokov S, Weiner B, Frenklach M J. Phys. Chem. 98 7073 (1994)
  186. Netto A, Frenklach M Diamond Relat. Mater. 14 1630 (2005)
  187. Cheesman A, Harvey J N, Ashfold M N R J. Phys. Chem. A 112 11436 (2008)
  188. May P W et al J. Appl. Phys. 108 114909 (2010)
  189. Liu X et al Appl. Surf. Sci. 362 387 (2016)
  190. Williams M D G "Modelling {100} CVD diamond growth using kinetic Monte Carlo" Doctoral Thesis (Bristol: Univ. of Bristol, 2022)
  191. Frenklach M, Skokov S J. Phys. Chem. B 101 3025 (1997)
  192. Larsson K, Carlsson J-O Phys. Rev. B 59 8315 (1999)
  193. Richley J C, Harvey J N, Ashfold M N R J. Phys. Chem. C 116 7810 (2012)
  194. May P W et al J. Phys. Condens. Matter 21 364203 (2009)
  195. van Enckevort W J P et al Surf. Coat. Technol. 47 39 (1991)
  196. Wild Ch, Herres N, Koidl P J. Appl. Phys. 68 973 (1990)
  197. van Enckevort W J P et al Diamond Relat. Mater. 4 250 (1995)
  198. Clausing R E et al Diamond Relat. Mater. 1 411 (1992)
  199. D’Evelyn M P, Graham J D, Martin L R Diamond Relat. Mater. 10 1627 (2001)
  200. Tallaire A et al Diamond Relat. Mater. 41 34 (2014)
  201. Nishitani-Gamo M et al J. Mater. Res. 14 3518 (1999)
  202. Tallaire A et al Diamond Relat. Mater. 41 34 (2014)
  203. Tsuno T et al J. Appl. Phys. 75 1526 (1994)
  204. Tokuda N et al Jpn. J. Appl. Phys. 53 04EH04 (2014)
  205. Lazea A et al Phys. Status Solidi A 209 1978 (2012)
  206. Teraji T, Mitani S, Ito T Phys. Status Solid. A 198 395 (2003)
  207. Tsuno T et al Jpn. J. Appl. Phys. 35 4724 (1996)
  208. Watanabe H et al Diamond Relat. Mater. 8 1272 (1999)
  209. Stekolnikov A A, Furthmüller J, Bechstedt F Phys. Rev. B 68 205306 (2003)
  210. Lesik M et al Diamond Relat. Mater. 56 47 (2015)
  211. Janssen G et al J. Cryst. Growth 125 42 (1992)
  212. Bales G S, Zangwill A Phys. Rev. B 41 5500 (1990)
  213. Green D S et al Science 259 1726 (1993)
  214. Silva F et al J. Phys. Condens. Matter 21 364202 (2009)
  215. Cappelli M A et al Plasma Chem. Plasma Process. 20 1 (2000)
  216. Ma J et al J. Appl. Phys. 104 103305 (2008)
  217. May P W, Mankelevich Yu A MRS Online Proc. Library 1282 302 (2010)
  218. Gicquel A et al Chem. Phys. 398 239 (2012)
  219. Clausing R E et al Diamond Relat. Mater. 1 411 (1992)
  220. Menon P M et al Diamond Relat. Mater. 7 1201 (1998)
  221. Vikharev A L et al Mater. Today Commun. 22 100816 (2020)
  222. May P W, Mankelevich Yu A J. Phys. Chem. C 112 12432 (2008)
  223. De Sio A et al Diamond Relat. Mater. 34 36 (2013)
  224. Wild C et al Diamond Relat. Mater. 2 158 (1993)
  225. Teraji T et al Phys. Status Solidi A 212 2365 (2015)
  226. Burton N C et al Proc. R. Soc. Lond. A 449 555 (1995)
  227. Nad S, Gu Y, Asmussen J Rev. Sci. Instrum. 86 074701 (2015)
  228. Bokii G B et al Prirodnye I Sinteticheskie Almazy (Natural And Synthetic Diamonds, Exec. Ed. I I Shafranovskii) (Moscow: Nauka, 1986)
  229. Nad S, Asmussen J Diamond Relat. Mater. 66 36 (2016)
  230. Friel I et al Diamond Relat. Mater. 18 808 (2009)
  231. Kato Y et al Appl. Phys. Express 6 025506 (2013)
  232. Muchnikov A B et al Phys. Status Solidi A 212 2572 (2015)
  233. Widmann C J et al Diamond Relat. Mater. 64 1 (2016)
  234. Achard J et al J. Phys. D 40 6175 (2007)
  235. Luo H et al Int. J. Extrem. Manuf. 3 022003 (2021)
  236. Tarutani M et al Appl. Phys. Lett. 68 2070 (1996)
  237. Du Y et al Nanomaterials 12 741 (2022)
  238. Mayr M et al Phys. Status Solidi A 212 2480 (2015)
  239. Geng C-W et al Acta Phys. Sinica 67 248101 (2018)
  240. Bellmann K et al J. Cryst. Growth 478 187 (2017)
  241. Li S-C et al Phys. Rev. B 74 195428 (2006)
  242. Couto M et al Appl. Surf. Sci. 62 263 (1992)
  243. Moseler M, Pastewka L, Hird J Comprehensive Hard Materials (Ed.-in-Chief V K Sarin) (Oxford: Elsevier, 2014) p. 81
  244. Lee N, Badzian A Diamond Relat. Mater. 6 130 (1997)
  245. Misbah C, Pierre-Louis O, Saito Y Rev. Mod. Phys. 82 981 (2010)
  246. Politi P et al Phys. Rep. 324 271 (2000)
  247. Krug J Physica A 313 47 (2002)
  248. Kallunki J, Krug J Europhys. Lett. 66 749 (2004)
  249. Michely T, Krug J Islands, Mounds, And Atoms: Patterns And Processes In Crystal Growth Far From Equilibrium (Berlin: Springer, 2004)
  250. Krug J Multiscale Modeling In (Intern. Ser. of Numerical Mathematics) Vol. 149 (Ed. A Voigt) (Basel: Birkhäuser, 2005) p. 69
  251. Gillet F, Pierre-Louis O, Misbah C Eur. Phys. J. B 18 519 (2000)
  252. Corrion A L, Wu F, Speck J S J. Appl. Phys. 112 054903 (2012)
  253. Kaufmann N A K et al J. Cryst. Growth 433 36 (2016)
  254. Bryan I et al J. Cryst. Growth 438 81 (2016)
  255. Rouzbahani R et al Carbon 172 463 (2021)
  256. Demlow S N, Rechenberg R, Grotjohn T Diamond Relat. Mater. 49 19 (2014)
  257. Shu G et al CrystEngComm. 22 2138 (2020)
  258. Zhang P et al Coatings 11 888 (2021)
  259. Pimpinelli A et al Phys. Rev. Lett. 88 206103 (2002)
  260. Krug J Collective Dynamics Of Nonlinear And Disordered Systems (Eds G Radons, W Just, P Häussler) (Berlin: Springer, 2005) p. 5
  261. Yu Y-M et al Appl. Phys. Lett. 99 263106 (2011)
  262. Chernov A A J. Cryst. Growth 264 499 (2004)
  263. Rost M, Šmilauer P, Krug J Surf. Sci. 369 393 (1996)
  264. Xie M H, Leung S Y, Tong S Y Surf. Sci. 515 L459 (2002)
  265. Slanina F, Krug J, Kotrla M Phys. Rev. E 71 041605 (2005)
  266. Sato M, Uwaha M Surf. Sci. 442 318 (1999)
  267. Tonchev V Bulgarian Chem. Commun. 44 9 (2012)
  268. Vollmer J et al New J. Phys. 10 053017 (2008)
  269. Ashkinazi E E et al Crystals 7 166 (2017)
  270. Akutsu N Phys. Rev. E 86 061604 (2012)
  271. Tamor M A, Everson M P J. Mater. Res. 9 1839 (1994)
  272. Takami T et al Surf. Sci. 440 103 (1999)
  273. Maroutian T, Douillard L, Ernst H-J Phys. Rev. B 64 165401 (2001)
  274. de Theije F K, Schermer J J, van Enckevort W J P Diamond Relat. Mater. 9 1439 (2000)
  275. Bogdan G "Growth and properties of nearly atomically-flat single crystal diamond prepared by plasma-enhanced chemical vapor deposition and its surface interactions" Doctoral Thesis (Leuven: Katholieke Univ. Leuven, 2007)
  276. Achard J et al J. Cryst. Growth 284 396 (2005)
  277. Ivanov O A et al Mater. Lett. 151 115 (2015)
  278. Tallaire A et al Phys. Status Solidi A 201 2419 (2004)
  279. Naamoun M et al Phys. Status Solidi A 209 1715 (2012)
  280. Tsubouchi N, Mokuno Y, Shikata S Diamond Relat. Mater. 63 43 (2016)
  281. Tsubouchi N, Mokuno Y J. Cryst. Growth 455 71 (2016)
  282. Ichikawa K et al Thin Solid Films 600 142 (2016)
  283. Kato Y et al Diamond Relat. Mater. 23 109 (2012)
  284. Hoa L T M et al Cryst. Growth Des. 14 5761 (2014)
  285. Ichikawa K et al J. Appl. Phys. 128 155302 (2020)
  286. Tallaire A et al Cryst. Growth Des. 16 2741 (2016)
  287. Rodgers W J et al J. Chem. Phys. 142 214707 (2015)
  288. Sunagawa I J. Cryst. Growth 99 1156 (1990)
  289. Mironov V P AIP Conf. Proc. 2069 040006 (2019)
  290. Palyanov Y N et al Cryst. Growth Des. 9 2922 (2009)
  291. Kallunki J, Krug J Europhys. Lett. 66 749 (2004)
  292. Yurov V et al Phys. Status Solidi A 214 1700177 (2017)
  293. Yin X, Geng D, Wang X Angew. Chem. Int. Ed. 55 2217 (2016)
  294. Yamada H, Chayahara A, Mokuno Y Jpn. J. Appl. Phys. 55 01AC07 (2016)
  295. Leal F F, Oliveira T J, Ferreira S C J. Stat. Mech. P09018 (2011)
  296. Shao G et al Materials 14 5964 (2021)
  297. Zhao Y et al Materials 12 2492 (2019)
  298. Ramamurti R et al Diamond Relat. Mater. 17 1320 (2008)
  299. Tallaire A et al Diamond Relat. Mater. 17 60 (2008)
  300. Nakano Y et al Diamond Relat. Mater. 125 108997 (2022)
  301. Krug J Nanoscale Phenomena And Structures. Proc. Of The Conf. On Nanoscale Phenomena And Structures In In Bulk And Surface Phases, Sofia, 2008 (Ed. D Kashchiev) (Sofia: Prof. Marin Drinov Publ. House of BAS, 2008); Krug J arXiv:0709.2049
  302. Cubillas P, Anderson M W Zeolites And Catalysis: Synthesis, Reactions And Applications (Eds J Čejka, A Corma, S Zones) (Weinheim: Wiley-VCH, 2010) p. 1
  303. Redinger A et al Phys. Rev. Lett. 100 035506 (2008)
  304. Krug J "Pattern formation by step edge barriers: The growth of spirals and wedding cakes" 2007 MRS Fall Meeting and Exhibit, November 26-30, 2007, Boston
  305. Krug J J. Stat. Phys. 87 505 (1997)
  306. Tsubouchi N, Ogura M, Makino T Diamond Relat. Mater. 97 107422 (2019)
  307. Gaukroger M P et al Diamond Relat. Mater. 17 262 (2008)
  308. Kato Y et al Jpn. J. Appl. Phys. 51 090103 (2012)
  309. Tsubouchi N, Shikata S Jpn. J. Appl. Phys. 53 068010 (2014)
  310. Naamoun M et al Diamond Relat. Mater. 58 62 (2015)
  311. Tallaire A et al Adv. Mater. 29 1604823 (2017)
  312. Fujita N et al Phys. Status Solidi A 203 3070 (2006)
  313. Kato Y et al Diamond Relat. Mater. 29 37 (2012)
  314. Sato Y, Miyajima K, Shikata S Diamond Relat. Mater. 126 109129 (2022)
  315. Giesen M, Icking-Konert G S Surf. Sci. 412-413 645 (1998)
  316. Tsuno T, Imai T, Fujimori N Jpn. J. Appl. Phys. 33 4039 (1994)
  317. Lloret F et al Phys. Status Solidi A 213 12570 (2016)
  318. Lloret F et al Appl. Phys. Lett. 108 181901 (2016)
  319. Lloret F et al Nanomaterials 8 814 (2018)
  320. Wang C, Irie M, Ito T Diamond Relat. Mater. 9 1650 (2000)
  321. Achard J et al Phys. Status Solidi A 211 2264 (2014)
  322. Buhler J, Prior Y J. Cryst. Growth 209 779 (2000)
  323. Delclos S et al Diamond Relat. Mater. 9 346 (2000)
  324. Angus J C et al J. Mater. Res. 7 3001 (1992)
  325. Dorignac D, Delclos S, Phillipp F Philos. Mag. B 81 1879 (2001)
  326. Takami T et al J. Vac. Sci. Technol. B 18 1198 (2000)
  327. Sawada H et al Diamond Relat. Mater. 10 2030 (2001)
  328. Tsubouchi N Appl. Phys. Lett. 117 222103 (2020)
  329. Ohmagari S et al J. Cryst. Growth 479 52 (2017)
  330. Zauner A R A et al J. Cryst. Growth 210 435 (2000)
  331. Zhou K et al J. Cryst. Growth 371 7 (2013)
  332. Okushi H et al J. Cryst. Growth 237-239 1269 (2002)
  333. Liang Q et al Appl. Phys. Lett. 94 024103 (2009)

© 1918–2025 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions