Issues

 / 

2024

 / 

July

  

Reviews of topical problems


Quantum optical metrology

  a, b,   a, b, §  b, *  b, #  b, c
a ITMO University, Kronverksky Pr. 49, bldg. A, St. Petersburg, 197101, Russian Federation
b South Ural State University, Lenin prospekt 76, Chelyabinsk, 454080, Russian Federation
c Quantum Technology Center of Lomonosov Moscow State University, Leninskie Gory 1, build. 35, Moscow, 119991, Russian Federation

We review recent progress in the field of optical quantum metrology, with a focus on the analysis of the current level of theoretical and experimental research on the generation, transformation, and measurement of nonclassical states of light, such as N00N, squeezed, and hybrid states, which combine transformations of both discrete and continuous variables of a quantized light field. We show how such states can be used to improve the measurement accuracy and to estimate unknown phase parameters in both linear and nonlinear metrology. Significant attention is paid to the description of actual quantum metrology schemes that take the loss of particles, the limited fidelity of photon detectors, and other factors into account. We therefore identify both the ultimate (fundamental) bounds imposed by quantum mechanical uncertainties of the quantities being measured and the bounds due to the effect of classical noise on the propagation and measurements of a quantized field. Of special importance are quantum metrology options based on spontaneous parametric light scattering, which, for more than 50 years, has been an indispensable tool for key accomplishments in quantum optics and related areas of photonics: quantum cryptography, quantum computing, and quantum sensing. In this regard, we analyze the current status of the use of the well-known Hong—Ou—Mandel photon anticorrelation effect and biphoton interference in various quantum metrology approaches in measuring temperature, length, material concentration, and so on. We also discuss the use of biphotons in photometry, radiometry, and sensing for the absolute calibration of modern photon-count detectors, as well as for measurements of the brightness temperature of hot radiation sources. The quantum metrology phenomena, methods, and approaches discussed here in light of the most recent progress on sources and detectors of quantum radiation will be an important tool in developing and practically implementing new schemes and algorithms for quantum processing and information transmission.

Typically, an English full text is available in about 1 month from the date of publication of the original article.

Keywords: quantum measurement, quantum interferometry, spontaneous parametric light scattering, quantum sensing, photometry, radiometry, nonclassical states of light, biphotons, quantum information and computing
PACS: 03.67.−a, 06.20.−f, 42.50.−p, 42.50.Dv (all)
DOI: 10.3367/UFNe.2024.01.039634
URL: https://ufn.ru/en/articles/2024/7/b/
Citation: Alodjants A P, Tsarev D V, Kuts D A, Podoshvedov S A, Kulik S P "Quantum optical metrology" Phys. Usp. 67 (7) (2024)

Received: 28th, September 2023, revised: 25th, December 2023, 16th, January 2024

Îðèãèíàë: Àëîäæàíö A Ï, Öàð¸â Ä Â, Êóö Ä À, Ïîäîøâåäîâ Ñ À, Êóëèê Ñ Ï «Êâàíòîâàÿ îïòè÷åñêàÿ ìåòðîëîãèÿ» ÓÔÍ 194 711–739 (2024); DOI: 10.3367/UFNr.2024.01.039634

Similar articles (20) ↓

  1. Yu.I. Vorontsov “The phase of an oscillator in quantum theory. What is it ’in reality’?45 847–868 (2002)
  2. D.F. Smirnov, A.S. Troshin “New phenomena in quantum optics: photon antibunching, sub-Poisson photon statistics, and squeezed states30 851–874 (1987)
  3. Yu.V. Vladimirova, V.N. Zadkov “Quantum optics of quantum emitters in the near field of a nanoparticle65 245–269 (2022)
  4. A.A. Grib “Bell’s inequalities and experimental verification of quantum correlations at macroscopic distances27 284–293 (1984)
  5. M.B. Menskii “Concept of consciousness in the context of quantum mechanics48 389–409 (2005)
  6. R.V. Zakharov, O.V. Tikhonova “Photon correlations and features of nonclassical optical fields in a squeezed vacuum state66 381–409 (2023)
  7. I.Yu. Kobzarev, L.B. Okun “On the photon mass11 338–341 (1968)
  8. F. Laloë, M. Leduc et alOptical polarization of helium-3 nuclei28 941–955 (1985)
  9. I.Sh. Averbukh, N.F. Perel’man “The dynamics of wave packets of highly-excited states of atoms and molecules34 (7) 572–591 (1991)
  10. I.V. Bargatin, B.A. Grishanin, V.N. Zadkov “Entangled quantum states of atomic systems44 597–616 (2001)
  11. V.I. Balykin “Plasmon nanolaser: current state and prospects61 846–870 (2018)
  12. D.D. Sukachev “Large quantum networks64 1021–1037 (2021)
  13. N.B. Delone, V.P. Krainov “Atomic stabilisation in a laser field38 1247–1268 (1995)
  14. M.L. Ter-Mikhaelyan “Simple atomic systems in resonant laser fields40 1195–1238 (1997)
  15. S.Ya. Kilin “Quantum information42 435–452 (1999)
  16. K.A. Valiev “Quantum computers and quantum computations48 1–36 (2005)
  17. I.V. Tyutin, I.I. Sobel’man “Induced radiative processes in quantum and classical theories6 267–278 (1963)
  18. N.G. Basov “Quantum electronics at the P. N. Lebedev Physics Institute of the Academy of Sciences of the USSR (FIAN) [Text of an address presented March 21, 1985 at the International Conference on Lasers and Electrooptics (CLEO ’85) Baltimore, USA, dedicated to the 25th anniversary of quantum electronics]29 179–185 (1986)
  19. S.I. Vinitskii, V.L. Derbov et alTopological phases in quantum mechanics and polarization optics33 (6) 403–428 (1990)
  20. D.N. Klyshko “Berry geometric phase in oscillatory processes36 (11) 1005–1019 (1993)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions