Issues

 / 

2022

 / 

April

  

Reviews of topical problems


Particle acceleration in space: a universal mechanism?

 a,   a, b
a Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Leninskie Gory 1 build. 2, Moscow, 119991, Russian Federation
b Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, Kaluzhskoe shosse 4, Troitsk, Москва, 108840, Russian Federation

Experimental evidence in favor of or against the existence of a universal mechanism for the acceleration of charged particles in the Universe is analyzed from the modern standpoint. We adopt a purely phenomenological approach to this very intricate problem, discussing spatial scales that range from the magnetospheres of Earth and other planets of the Solar System to the Sun's atmosphere, the heliosphere, supernovae, and extragalactic objects responsible for the generation of ultra-high-energy cosmic rays. We demonstrate a great variety of acceleration mechanisms operating in the Universe. However, data on the nuclear composition of accelerated particles obtained in numerous experiments may be indicative of a global nature of the Fermi-type stochastic acceleration mechanism inherent in various astrophysical objects. This mechanism may well be dominant over others, but a number of experimental observations are nevertheless inconsistent with that idea. It is possible that a hierarchy of accelerating mechanisms operates in some space objects, with preliminary acceleration by one mech„anism followed by other mechanisms, acting sequentially or alternatively. We therefore discuss all currently available data for and against the global `presence' of a Fermi-type acceleration mechanism.

Fulltext pdf (1.1 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2021.07.039022
Keywords: cosmic rays, acceleration sources and mechanisms, shock waves in space, plasma physics, composition, spectrum, anisotropy, new physics of nuclear interactions
PACS: 26.40.+r, 96.50.Vg, 98.70.Sa (all)
DOI: 10.3367/UFNe.2021.07.039022
URL: https://ufn.ru/en/articles/2022/4/c/
000848072400003
2-s2.0-85145809722
2022PhyU...65..379P
Citation: Panasyuk M I, Miroshnichenko L I "Particle acceleration in space: a universal mechanism?" Phys. Usp. 65 379–405 (2022)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 5th, November 2020, revised: 14th, July 2021, 17th, July 2021

Оригинал: Панасюк М И, Мирошниченко Л И «Ускорение частиц в космосе: универсальный механизм?» УФН 192 413–442 (2022); DOI: 10.3367/UFNr.2021.07.039022

References (231) Cited by (6) Similar articles (20) ↓

  1. L.I. Miroshnichenko “Solar cosmic rays: 75 years of researchPhys. Usp. 61 323–352 (2018)
  2. E.G. Berezhko, G.F. Krymskii “Acceleration of cosmic rays by shock wavesSov. Phys. Usp. 31 27–51 (1988)
  3. A.D. Panov, D.M. Podorozhnyi, A.N. Turundaevskii “Direct observations of cosmic rays: state of the artPhys. Usp. 67 639–667 (2024)
  4. E.G. Berezhko, G.F. Krymskii “Acceleration of cosmic rays by shock wavesSov. Phys. Usp. 31 27–51 (1988)
  5. V.L. Ginzburg “Astrophysical aspects of cosmic-ray research (first 75 years and outlook for the future)Sov. Phys. Usp. 31 491–510 (1988)
  6. V.V. Uchaikin “Fractional phenomenology of cosmic ray anomalous diffusionPhys. Usp. 56 1074–1119 (2013)
  7. V.S. Berezinsky, V.I. Dokuchaev, Yu.N. Eroshenko “Small scale clumps of dark matterPhys. Usp. 57 1–36 (2014)
  8. I.V. Galaktionov “Search for antimatter and dark matter, precision studies of the cosmic rays fluxes on the international space station. AMS experiment. Results of four year exposurePhys. Usp. 60 40–57 (2017)
  9. L.M. Zelenyi, A.I. Neishtadt et alQuasiadiabatic dynamics of charged particles in a space plasmaPhys. Usp. 56 347–394 (2013)
  10. R.L. Aptekar, A.M. Bykov et alCosmic gamma-ray bursts and soft gamma-repeaters — observations and modeling of extreme astrophysical phenomena (100th anniversary of the Ioffe Institute)Phys. Usp. 62 739–753 (2019)
  11. A.M. Bykov, I.N. Toptygin “Instabilities of a multicomponent plasma with accelerated particles and magnetic field generation in astrophysical objectsPhys. Usp. 50 141–174 (2007)
  12. V.V. Uchaikin, A.D. Erlykin, R.T. Sibatov “Nonlocal (fractional-differential) model of cosmic ray transport in the interstellar mediumPhys. Usp. 66 221–262 (2023)
  13. P.A. Gritsyk, B.V. Somov “Modern analytic models of acceleration and propagation of electrons in solar flaresPhys. Usp. 66 437–459 (2023)
  14. V.L. Ginzburg, V.S. Ptuskin “On the origin of cosmic rays: Some problems in highenergy astrophysicsSov. Phys. Usp. 18 931–959 (1975)
  15. D.V. Bisikalo, V.I. Shematovich et alGas envelopes of exoplanets—hot JupitersPhys. Usp. 64 747–800 (2021)
  16. V.V. Zaitsev, A.V. Stepanov “Coronal magnetic loopsPhys. Usp. 51 1123–1160 (2008)
  17. V.L. Ginzburg, S.I. Syrovatskii “Present status of the question of the origin of cosmic raysSov. Phys. Usp. 3 504–541 (1961)
  18. L.I. Dorman, I.Ya. Libin “Short-period variations in cosmic-ray intensitySov. Phys. Usp. 28 233–256 (1985)
  19. V.L. Ginzburg, V.A. Dogel’ “Some aspects of gamma-ray astronomySov. Phys. Usp. 32 385–415 (1989)
  20. V.L. Ginzburg, S.I. Syrovatskii “Some problems of gamma and X-ray astronomySov. Phys. Usp. 7 696–720 (1965)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions