Issues

 / 

2022

 / 

January

  

Reviews of topical problems


Topological superconductivity and Majorana states in low-dimensional systems

 a,  a,  a,  a,  a,  a, b,  c, d
a Kirensky Institute of Physics, Federal Research Center Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences, Academgorodok 50, str. 38, Krasnoyarsk, 660036, Russian Federation
b Reshetnev Siberian State Aerospace University, prosp. Gazety Krasnoyarskii rabochii 31, Krasnoyarsk, 660014, Russian Federation
c P.L. Kapitza Institute for Physical Problems, Russian Academy of Sciences, ul. Kosygina 2, Moscow, 117334, Russian Federation
d HSE University, ul. Myasnitskaya 20, Moscow, 101000, Russian Federation

We discuss the properties of topologically nontrivial superconducting phases and the conditions for their realization in condensed media, the criteria for the appearance of elementary Majorana-type excitations in solids, and the corresponding principles and experimental methods for identifying Majorana bound states (MBSs). Along with the well-known Kitaev chain and superconducting nanowire (SNW) models with spin--orbit coupling in an external magnetic field, we discuss models of quasi-two-dimensional materials in which MBSs are realized in the presence of noncollinear spin ordering. For finite-length SNWs, we demonstrate a cascade of quantum transitions occurring with a change in the magnetic field, accompanied by a change in the fermion parity of the ground state. The corresponding anomalous behavior of the magnetocaloric effect can be used as a tool for identifying MBSs. We devote considerable attention to the analysis of the transport characteristics of devices that contain topologically nontrivial materials. The results of studying the conductivity of an Aharonov--Bohm ring whose arms are connected by an SNW are discussed in detail. An important feature of this device is the appearance of Fano resonances in the dependence of conductance on the magnetic field when the SNW is in a topologically nontrivial phase. We establish a relation between the characteristics of such resonances and the spatial structure of the lowest-energy SNW state. The conditions for the occurrence of an MBS in the phase of the coexistence of chiral d+id superconductivity and 120-degree spin ordering are determined in the framework of the t-J-V model on a triangular lattice. We take electron--electron interactions into account in discussing the topological invariants of low-dimensional superconducting materials with noncollinear spin ordering. The formation of Majorana modes in regions with an odd value of a topological ℤ invariant is demonstrated. The spatial structure of these excitations in the Hubbard fermion ensemble is determined.

Fulltext pdf (2.3 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2021.03.038950
Keywords: low-dimensional system, Majorana bound state, spin—orbit coupling, topological invariant, Coulomb correlations, noncollinear magnetism, topological superconductivity, quantum transport
PACS: 71.20.Nr, 71.20.Ps, 71.23.An, 71.70.Ej, 73.23.−b, 74.20.Rp, 74.25.F−, 74.90.+n (all)
DOI: 10.3367/UFNe.2021.03.038950
URL: https://ufn.ru/en/articles/2022/1/b/
000788597000002
2-s2.0-85127103681
2022PhyU...65....2V
Citation: Val’kov V V, Shustin M S, Aksenov S V, Zlotnikov A O, Fedoseev A D, Mitskan V A, Kagan M Yu "Topological superconductivity and Majorana states in low-dimensional systems" Phys. Usp. 65 2–39 (2022)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 26th, May 2020, revised: 18th, December 2020, 11th, March 2021

Оригинал: Вальков В В, Шустин М С, Аксенов С В, Злотников А О, Федосеев А Д, Мицкан В А, Каган М Ю «Топологическая сверхпроводимость и майорановские состояния в низкоразмерных системах» УФН 192 3–44 (2022); DOI: 10.3367/UFNr.2021.03.038950

References (285) Cited by (22) Similar articles (20) ↓

  1. M.Yu. Kagan, V.A. Mitskan, M.M. Korovushkin “Anomalous superconductivity and superfluidity in repulsive fermion systemsPhys. Usp. 58 733–761 (2015)
  2. M.Yu. Kagan, A.V. Turlapov “BCS—BEC crossover, collective excitations, and hydrodynamics of superfluid quantum fluids and gasesPhys. Usp. 62 215–248 (2019)
  3. Yu.M. Shukrinov “Anomalous Josephson effectPhys. Usp. 65 317–354 (2022)
  4. A.S. Mel’nikov, S.V. Mironov et alSuperconducting spintronics: state of the art and prospectsPhys. Usp. 65 1248–1289 (2022)
  5. P.I. Arseev “On the nonequilibrium diagram technique: derivation, some features and applicationsPhys. Usp. 58 1159–1205 (2015)
  6. G.B. Lesovik, I.A. Sadovskyy “Scattering matrix approach to the description of quantum electron transportPhys. Usp. 54 1007–1059 (2011)
  7. S.I. Vedeneev “Quantum oscillations in three-dimensional topological insulatorsPhys. Usp. 60 385–401 (2017)
  8. V.V. Val’kov, D.M. Dzebisashvili et alSpin-polaron concept in the theory of normal and superconducting states of cupratesPhys. Usp. 64 641–670 (2021)
  9. Z.D. Kvon, D.A. Kozlov et alTopological insulators based on HgTePhys. Usp. 63 629–647 (2020)
  10. V.P. Mineev “Superconductivity in uranium ferromagnetsPhys. Usp. 60 121–148 (2017)
  11. M.Yu. Kagan, K.I. Kugel’ “Inhomogeneous charge distributions and phase separation in manganitesPhys. Usp. 44 553–570 (2001)
  12. K.I. Kugel’, D.I. Khomskii “The Jahn-Teller effect and magnetism: transition metal compoundsSov. Phys. Usp. 25 231–256 (1982)
  13. M.V. Rybin, M.F. Limonov “Resonance effects in photonic crystals and metamaterials (100th anniversary of the Ioffe Institute)Phys. Usp. 62 823–838 (2019)
  14. N.B. Ivanova, S.G. Ovchinnikov et alSpecific features of spin, charge, and orbital ordering in cobaltitesPhys. Usp. 52 789–810 (2009)
  15. A.I. Buzdin, L.N. Bulaevskii “Antiferromagnetic superconductorsSov. Phys. Usp. 29 412–425 (1986)
  16. E.F. Gross, S.A. Permogorov, B.S. Razbirin “Annihilation of excitons and exciton-phonon interactionSov. Phys. Usp. 14 104–112 (1971)
  17. M.I. Tribelsky, A.E. Miroshnichenko “Resonant scattering of electromagnetic waves by small metal particlesPhys. Usp. 65 40–61 (2022)
  18. K.L. Koshelev, Z.F. Sadrieva et alBound states in the continuum in photonic structuresPhys. Usp. 66 494–517 (2023)
  19. V.E. Zakharov, E.A. Kuznetsov “Solitons and collapses: two evolution scenarios of nonlinear wave systemsPhys. Usp. 55 535–556 (2012)
  20. D.A. Trunin “Pedagogical introduction to the Sachdev—Ye—Kitaev model and two-dimensional dilaton gravityPhys. Usp. 64 219–252 (2021)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions