Issues

 / 

2023

 / 

May

  

Reviews of topical problems


Bound states in the continuum in photonic structures

 a,  b,  b,  a,   b, c
a Nonlinear Physics Centre, Research School of Physical Sciences and Engineering, Australian National University, Mlls Road, Bldng 59, Canberra, 0200, Australia
b School of Physics and Engineering, ITMO University, Birzhevaya liniya V.O., 16, St. Peterburg, 199034, Russian Federation
c Harbin Engineering University, Qingdao Innovation and Development Center, Sansha road 1777, Qingdao, Shandong, 266000, China

Bound states in the continuum (BICs) are a striking example of how a solution to a simple problem of quantum mechanics, obtained about a century ago, can serve as an incentive to study a wide range of resonance phenomena in wave physics. Due to the giant radiative lifetime, BICs have found multiple applications in various fields of physics studying wave processes, in particular, in hydrodynamics, atomic physics, and acoustics. In this review, we present a broad view of the physics of BICs and related effects, focusing primarily on photonic dielectric structures. We consider the history of the development of BIC studies, the main physical mechanisms of their formation, and specific examples of structures that can support such states. We also discuss possible practical applications of BICs in optics, photonics, and radiophysics.

Fulltext pdf (11 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2021.12.039120
Keywords: bound states in the continuum, metasurfaces, resonators, Fano resonance, diffraction structures, nanophotonics
PACS: 42.25.Bs, 42.25.Fx, 42.79.Dj, 42.82.Et (all)
DOI: 10.3367/UFNe.2021.12.039120
URL: https://ufn.ru/en/articles/2023/5/c/
Citation: Koshelev K L, Sadrieva Z F, Shcherbakov A A, Kivshar Yu S, Bogdanov A A "Bound states in the continuum in photonic structures" Phys. Usp. 66 494–517 (2023)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 30th, August 2021, revised: 5th, December 2021, 6th, December 2021

:   ,   ,   ,   ,    « » 193 528–553 (2023); DOI: 10.3367/UFNr.2021.12.039120

© 1918–2023 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions