Issues

 / 

2021

 / 

February

  

Reviews of topical problems


Collective contributions to self-diffusion in liquids

,
Mechnikov Odessa National University, Dvoryanskaya st. 2, Odessa, 65026, Ukraine

The present work is devoted to describing the current state of the collective transport theory in liquids. In this connection, the results of MD-modeling of the root mean square displacement and the velocity autocorrelation function of a molecule (VACFM) at large enough times are discussed. The characteristic function allowing one to estimate the relative value of collective contributions to the self-diffusion coefficient is introduced and studied in detail. Low-frequency spectra of the VACFM are used to determine the Maxwell relaxation time, playing the key role in the approach presented. The possibility of determining the binodal and spinodal positions by the temperature dependences of self-diffusion coefficients on isochores is considered.

Fulltext pdf (748 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2020.05.038759
Keywords: self-diffusion, collective effects, velocity autocorrelation function, metastable states, spinodal
PACS: 61.20.Lc, 61.20.Ne, 66.20.−d, 66.30.jj (all)
DOI: 10.3367/UFNe.2020.05.038759
URL: https://ufn.ru/en/articles/2021/2/c/
000644699500003
2-s2.0-85105684198
2021PhyU...64..157M
Citation: Malomuzh N P, Shakun K S "Collective contributions to self-diffusion in liquids" Phys. Usp. 64 157–174 (2021)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 26th, December 2019, revised: 26th, April 2020, 5th, May 2020

Оригинал: Маломуж Н П, Шакун К С «Коллективные составляющие процесса самодиффузии в жидкостях» УФН 191 163–181 (2021); DOI: 10.3367/UFNr.2020.05.038759

References (139) Cited by (4) Similar articles (20) ↓

  1. A.E. Galashev, O.R. Rakhmanova “Mechanical and thermal stability of graphene and graphene-based materialsPhys. Usp. 57 970–989 (2014)
  2. G.N. Sarkisov “Approximate equations of the theory of liquids in the statistical thermodynamics of classical liquid systemsPhys. Usp. 42 545–561 (1999)
  3. M.V. Davidovich “Hyperbolic metamaterials: production, properties, applications, and prospectsPhys. Usp. 62 1173–1207 (2019)
  4. G.N. Sarkisov “Molecular distribution functions of stable, metastable and amorphous classical modelsPhys. Usp. 45 597–617 (2002)
  5. R.S. Berry, B.M. Smirnov “Modeling of configurational transitions in atomic systemsPhys. Usp. 56 973–998 (2013)
  6. G.B. Lesovik, I.A. Sadovskyy “Scattering matrix approach to the description of quantum electron transportPhys. Usp. 54 1007–1059 (2011)
  7. V.N. Pokrovskii “Dynamics of weakly-coupled linear macromoleculesSov. Phys. Usp. 35 (5) 384–399 (1992)
  8. G.I. Kanel, V.E. Fortov, S.V. Razorenov “Shock waves in condensed-state physicsPhys. Usp. 50 771–791 (2007)
  9. G.P. Mikhailov, T.I. Borisova “Molecular motion in polymersSov. Phys. Usp. 7 375–384 (1964)
  10. V.S. Anishchenko, A.B. Neiman et alStochastic resonance: noise-enhanced orderPhys. Usp. 42 7–36 (1999)
  11. A.M. Bykov, I.N. Toptygin “Particle kinetics in highly turbulent plasmas (renormalization and self-consistent field methods)Phys. Usp. 36 (11) 1020–1052 (1993)
  12. V.N. Ryzhov, E.E. Tareyeva et alComplex phase diagrams of systems with isotropic potentials: results of computer simulationsPhys. Usp. 63 417–439 (2020)
  13. I.S. Aranson “Topological defects in active liquid crystalsPhys. Usp. 62 892–909 (2019)
  14. V.N. Ryzhov, E.E. Tareyeva et alBerezinskii—Kosterlitz—Thouless transition and two-dimensional meltingPhys. Usp. 60 857–885 (2017)
  15. P.I. Arseev “On the nonequilibrium diagram technique: derivation, some features and applicationsPhys. Usp. 58 1159–1205 (2015)
  16. V.V. Brazhkin, A.G. Lyapin et alWhere is the supercritical fluid on the phase diagram?Phys. Usp. 55 1061–1079 (2012)
  17. R.S. Berry, B.M. Smirnov “Phase transitions and adjacent phenomena in simple atomic systemsPhys. Usp. 48 345–388 (2005)
  18. A.I. Zhakin “Electrohydrodynamics of charged surfacesPhys. Usp. 56 141–163 (2013)
  19. I.L. Fabelinskii “Macroscopic and molecular shear viscosityPhys. Usp. 40 689–700 (1997)
  20. E.A. Gastilovich “Vibronic coupling in excited electronic states of complex moleculesSov. Phys. Usp. 34 (7) 592–615 (1991)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions