Issues

 / 

2021

 / 

February

  

Reviews of topical problems


Collective contributions to self-diffusion in liquids

,
Mechnikov Odessa National University, Dvoryanskayast. 2, Odessa, 65026, Ukraine

The present work is devoted to describing the current state of the collective transport theory in liquids. In this connection, the results of MD-modeling of the root mean square displacement and the velocity autocorrelation function of a molecule (VACFM) at large enough times are discussed. The characteristic function allowing one to estimate the relative value of collective contributions to the self-diffusion coefficient is introduced and studied in detail. Low-frequency spectra of the VACFM are used to determine the Maxwell relaxation time, playing the key role in the approach presented. The possibility of determining the binodal and spinodal positions by the temperature dependences of self-diffusion coefficients on isochores is considered.

Fulltext is available at IOP
Keywords: self-diffusion, collective effects, velocity autocorrelation function, metastable states, spinodal
PACS: 61.20.Lc, 61.20.Ne, 66.20.−d, 66.30.jj (all)
DOI: 10.3367/UFNe.2020.05.038759
URL: https://ufn.ru/en/articles/2021/2/c/
Citation: Malomuzh N P, Shakun K S "Collective contributions to self-diffusion in liquids" Phys. Usp. 64 157–174 (2021)
BibTexBibNote ® (generic)BibNote ® (RIS)Medline RefWorks
RT Journal
T1 Collective contributions to self-diffusion in liquids
A1 Malomuzh,N.P.
A1 Shakun,K.S.
PB Physics-Uspekhi
PY 2021
FD 10 Feb, 2021
JF Physics-Uspekhi
JO Phys. Usp.
VO 64
IS 2
SP 157-174
DO 10.3367/UFNe.2020.05.038759
LK https://ufn.ru/en/articles/2021/2/c/

Received: 26th, December 2019, revised: 26th, April 2020, 5th, May 2020

:   ,    « » 191 163–181 (2021); DOI: 10.3367/UFNr.2020.05.038759

© 1918–2021 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions