Issues

 / 

2021

 / 

October

  

Reviews of topical problems


Control of the emission of elementary quantum systems using metamaterials and nanometaparticles

 
Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation

The most important direction in the development of fundamental and applied physics is the study of the properties of optical systems at nanoscales for creating optical and quantum computers, biosensors, single-photon sources for quantum informatics, DNA sequencing devices, detectors of various fields, etc. In all these cases, nanosize light sources such as dye molecules, quantum dots (epitaxial or colloidal), color centers in crystals, and nanocontacts in metals are of utmost importance. In the nanoenvironment, the characteristics of these elementary quantum systems — pumping rates, radiative and nonradiative decay rates, the local density of states, lifetimes, level shifts — experience changes, which can be used to create nanosize light sources with the desired properties. Modern theoretical and experimental works on controlling the emission of elementary quantum systems with the help of plasmonic and dielectric nanostructures, metamaterials, and metamaterial nanoparticles are analyzed.

Fulltext pdf (2 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2021.01.038910
Keywords: spontaneous emission, metamaterials, chirality, hyperbolicity, nanoparticles, nanoantennas, nanooptics, nanolaser, fluorescence, Parcell factor, forbidden transitions, modes, single-photon sources, plasmons, negative refraction
PACS: 03.50.De, 32.50.+d, 32.70.Jz, 42.25.−p, 42.50.Pq, 42.79.−e, 78.67.−n, 78.67.Pt (all)
DOI: 10.3367/UFNe.2021.01.038910
URL: https://ufn.ru/en/articles/2021/10/b/
000740826300002
2-s2.0-85123453879
Citation: Klimov V V "Control of the emission of elementary quantum systems using metamaterials and nanometaparticles" Phys. Usp. 64 990–1020 (2021)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 17th, August 2020, revised: 14th, January 2021, 14th, January 2021

Оригинал: Климов В В «Управление излучением элементарных квантовых систем с помощью метаматериалов и нанометачастиц» УФН 191 1044–1076 (2021); DOI: 10.3367/UFNr.2021.01.038910

References (249) ↓ Cited by (12) Similar articles (20)

  1. Noginov M A et al Nature 460 1110 (2009)
  2. Balykin V I Usp. Fiz. Nauk 188 935 (2018); Balykin V I Phys. Usp. 61 846 (2018)
  3. Krasnok A E et al Opt. Express 20 20599 (2012)
  4. Krasnok A E i dr Usp. Fiz. Nauk 183 561 (2013); Krasnok A E et al Phys. Usp. 56 539 (2013)
  5. Balykin V I, Melent’ev P N Usp. Fiz. Nauk 188 143 (2018); Balykin V I, Melentiev P N Phys. Usp. 61 133 (2018)
  6. Lepeshov S I i dr Usp. Fiz. Nauk 188 1137 (2018); Lepeshov S I et al Phys. Usp. 61 1035 (2018)
  7. Agio M, Alù A (Eds) Optical Antennas (Cambridge: Cambridge Univ. Press, 2013)
  8. Kivshar Yu, Miroshnichenko A Opt. Photon. News 28 (1) 24 (2017)
  9. Byrnes S J et al Opt. Express 24 5110 (2016)
  10. Remnev M A, Klimov V V Usp. Fiz. Nauk 188 169 (2018); Remnev M A, Klimov V V Phys. Usp. 61 157 (2018)
  11. Yesilkoy F et al Nat. Photon. 13 390 (2019)
  12. Rodionov S A, Remnev M A, Klimov V V Sens. Bio-Sens. Res. 22 100263 (2019)
  13. Baburin A S et al Opt. Mater. Express 9 1173 (2019)
  14. Staude I, Schilling J Nat. Photon. 11 274 (2017)
  15. Sun C et al Nature 528 534 (2015)
  16. Wang K et al Science 361 1104 (2018)
  17. Stav T et al Science 361 1101 (2018)
  18. Kruk S et al Nat. Nanotechnol. 14 126 (2019)
  19. Purcell E M Phys. Rev. 69 681 (1946)
  20. Bykov V P Kvantovaya Elektronika 1 1557 (1974); Bykov V P Sov. J. Quantum Electron. 4 861 (1974)
  21. Bykov V P, Shepelev G V Izluchenie Atomov Vblizi Material’nykh Tel: Nekotorye Voprosy Kvantovoi Teorii (M.: Nauka, 1986)
  22. Yablonovitch E Phys. Rev. Lett. 58 2059 (1987)
  23. John S Phys. Rev. Lett. 58 2486 (1987)
  24. Shields A J Nat. Photon. 1 215 (2007)
  25. Mahmoodian S, Lodahl P, Sørensen A S Phys. Rev. Lett. 117 240501 (2016)
  26. Daveau R S et al Optica 4 (2) 178 (2017)
  27. Oulton R F et al Nature 461 629 (2009)
  28. Schulz K M et al Phys. Rev. Lett. 117 085503 (2016)
  29. Lakowicz J R et al J. Phys. D 36 R240 (2003)
  30. Shambat G et al Nat. Commun. 2 539 (2011)
  31. Hamam R E et al Opt. Express 16 12523 (2008)
  32. Ginzburg P et al Light Sci. Appl. 6 e16273 (2017)
  33. Kullock R et al Nat. Commun. 11 115 (2020)
  34. Einstein A Mitt. Phys. Ges. Zürich Z (18) 47 (1916); Einstein A Phys. Z. 18 121 (1917); Per. na russk. yaz., Einshtein A Sobranie Nauchnykh Trudov Vol. 3 (M.: Nauka, 1966) p. 393
  35. Dirac P A M The Principles Of Quantum Mechanics 4th ed. (Oxford: Clarendon Press, 1958)
  36. Fermi E Rev. Mod. Phys. 4 87 (1932)
  37. Bunkin F V, Oraevskii A N Izv. Vuzov. Radiofizika 2 181 (1959)
  38. Oraevskii A N Usp. Fiz. Nauk 164 415 (1994); Oraevskii A N Phys. Usp. 37 393 (1994)
  39. Kuhn H J. Chem. Phys. 53 101 (1970)
  40. Chance R R, Prock A, Silbey Advances In Chemical Physics Vol. 37 (Eds I Prigogine, S A Rice) (New York: John Wiley, 1978) p. 1
  41. Sullivan K G, Hall D G J. Opt. Soc. Am. B 14 1149 (1997)
  42. Klimov V V, Ducloy M, Letokhov V S J. Mod. Opt. 43 2251 (1996)
  43. Klimov V V, Ducloy M, Letokhov V S J. Mod. Opt. 43 549 (1996)
  44. Klimov V V, Dyuklo M, Letokhov V S Kvantovaya Elektronika 31 569 (2001); Klimov V V, Ducloy M, Letokhov V S Quantum Electron. 31 569 (2001)
  45. Rybin M V et al Sci. Rep. 6 20599 (2016)
  46. Novotny L, Hecht B Principles Of Nano-Optics (Cambridge: Cambridge Univ. Press, 2006); Per. na russk. yaz., Novotnyi L, Khekht B Osnovy Nanooptiki (M.: Fizmatlit, 2009)
  47. Wylie J M, Sipe J E Phys. Rev. A 30 1185 (1984)
  48. Wylie J M, Sipe J E Phys. Rev. A 32 2030 (1985)
  49. Snoeks E, Lagendijk A, Polman A Phys. Rev. Lett. 74 2459 (1995)
  50. Sprik R, van Tiggelen B A, Lagendijk A Europhys. Lett. 35 265 (1996)
  51. Klimov V V, Ducloy M, Letokhov V S J. Mod. Opt. 44 1081 (1997)
  52. Klimov V V, Letokhov V S Zh. Eksp. Teor. Fiz. 111 44 (1997); Klimov V V, Letokhov V S J. Exp. Theor. Phys. 84 24 (1997)
  53. Klimov V V, Ducloy M, Letokhov V S Phys. Rev. A 59 2996 (1999)
  54. Klimov V V, Letokhov V S, Ducloy M Laser Phys. 17 912 (2007)
  55. Yoshie T et al Nature 432 200 (2004)
  56. Press D et al Phys. Rev. Lett. 98 117402 (2007)
  57. Hennessy K et al Nature 445 896 (2007)
  58. Zhang J L et al Nano Lett. 18 1360 (2018)
  59. Khitrova G et al Nat. Phys. 2 81 (2006)
  60. Stete F, Koopman W, Bargheer M ACS Photon. 4 1669 (2017)
  61. Pelton M, Storm S D, Leng H Nanoscale 11 14540 (2019)
  62. Devoret M H, Girvin S, Schoelkopf R Ann. Physik 16 767 (2007)
  63. Baranov D G et al Nat. Commun. 11 2715 (2020)
  64. Forn-Díaz P et al Rev. Mod. Phys. 91 025005 (2019)
  65. Kockum A F et al Nat. Rev. Phys. 1 19 (2019)
  66. Klimov V V, Letokhov V S Comments Mod. Phys. 2 D15 (2000)
  67. Chance R R, Prock A, Silbey R J. Chem. Phys. 65 2527 (1976); Chance R R, Prock A, Silbey R J. Chem. Phys. 66 1765 (1977), Erratum
  68. Klimov V V, Ducloy M Phys. Rev. A 72 043809 (2005)
  69. Klimov V, Guzatov D Singular And Chiral Nanoplasmonics (Eds S V Boriskina, N I Zheludev) (Singapore: Pan Stanford Publ., 2014) p. 121
  70. Klimov V V, Guzatov D V, Ducloy M Europhys. Lett. 97 47004 (2012)
  71. Guzatov D V, Klimov V V, Poprukailo N S Zh. Eksp. Teor. Fiz. 143 611 (2013); Guzatov D V, Klimov V V, Poprukailo N S J. Exp. Theor. Phys. 116 531 (2013)
  72. Guzatov D V, Klimov V V New J. Phys. 14 123009 (2012)
  73. Klimov V V, Guzatov D V Usp. Fiz. Nauk 182 1130 (2012); Klimov V V, Guzatov D V Phys. Usp. 55 1054 (2012)
  74. Klimov V V, Letokhov V S Laser Phys. 15 61 (2005)
  75. Klimov V V, Letokhov V S Phys. Rev. A 54 4408 (1996)
  76. Chew H Phys. Rev. A 38 3410 (1988)
  77. Chew H J. Chem. Phys. 87 1355 (1987)
  78. Chew H, McNulty P J, Kerker M Phys. Rev. A 13 396 (1976)
  79. Klimov V V, Ducloy M Phys. Rev. A 62 043818 (2000)
  80. Klimov V V, Ducloy M Phys. Rev. A 69 013812 (2004)
  81. Yannopapas V, Vitanov N V Phys. Rev. B 75 115124 (2007)
  82. Klimov V V Usp. Fiz. Nauk 173 1008 (2003); Klimov V V Phys. Usp. 46 979 (2003)
  83. Klimov V Nanoplasmonics (Singapore: Pan Stanford Publ., 2014)
  84. Klimov V V, Ducloy M, Letokhov V S Eur. Phys. J. D 20 133 (2002)
  85. Klimov V V, Ducloy M, Letokhov V S Chem. Phys. Lett. 358 192 (2002)
  86. Guzatov D V, Klimov V V Chem. Phys. Lett. 412 341 (2005)
  87. Guzatov D V, Klimov V V, Pikhota M Yu Laser Phys. 20 85 (2010)
  88. Guzatov D V, Klimov V V Phys. Rev. A 98 013823 (2018)
  89. Guzatov D V, Klimov V V Kvantovaya Elektronika 45 250 (2015); Guzatov D V, Klimov V V Quantum Electron. 45 250 (2015)
  90. Vainshtein L A Elektromagnitnye Volny (M.: Radio i svyaz’, 1988)
  91. Vainshtein L A Otkrytye Rezonatory i Otkrytye Volnovody (M.: Sov. radio, 1966); Per. na angl. yaz., Weinstein L A Open Resonators And Open Waveguides (Golem Ser. in Electromagnetic) Vol. 2 (Boulder, CO: Golem Press, 1969)
  92. Kristensen P T, Van Vlack C, Hughes S AIP Conf. Proc. 1398 100 (2011)
  93. Kristensen P T, Hughes S ACS Photon. 1 2 (2014)
  94. Sauvan C et al Phys. Rev. Lett. 110 237401 (2013)
  95. Lalanne P et al Laser Photon. Rev. 12 1700113 (2018)
  96. Muljarov E A, Langbein W Phys. Rev. B 94 235438 (2016)
  97. Coccioli R et al IEE Proc. Optoelectron. 145 391 (1998)
  98. Muljarov E A, Langbein W, Zimmermann R Europhys. Lett. 92 50010 (2011)
  99. Klimov V Opt. Lett. 45 4300 (2020); Klimov V arXiv:2108.04038
  100. Schulz K M et al Opt. Express 26 19247 (2018)
  101. Then P et al Phys. Rev. A 89 053801 (2014)
  102. Maslovski S I, Simovski C R Nanophotonics 8 429 (2019)
  103. Bharadwaj P, Deutsch B, Novotny L Adv. Opt. Photon. 1 438 (2009)
  104. Girard C et al Chem. Phys. Lett. 404 44 (2005)
  105. Klimov V V Usp. Fiz. Nauk 178 875 (2008); Klimov V V Phys. Usp. 51 839 (2008)
  106. Bozhevolnyi S I, Khurgin J B Optica 3 1418 (2016)
  107. Drexhage K H, Kuhn H, Schäfer F P Ber. Bunsenges. Phys. Chem. 72 329 (1968)
  108. Drexhage K H J. Lumin. 1-2 693 (1970)
  109. Amos R, Barnes W L Phys. Rev. B 55 7249 (1997)
  110. Anger P, Bharadwaj P, Novotny L Phys. Rev. Lett. 96 113002 (2006)
  111. Bharadwaj P, Anger P, Novotny L Nanotechnology 18 044017 (2006)
  112. Akimov A V et al Nature 450 402 (2007)
  113. Shahbazyan T V Phys. Rev. Lett. 117 207401 (2016)
  114. Shahbazyan T V Phys. Rev. B 98 115401 (2018)
  115. Aizenberg G Z Antenny Ul’trakorotkikh Voln (M.: Svyaz’izdat, 1957)
  116. Nadenenko S I Antenny (M.: Svyaz’izdat, 1959)
  117. Markov G T, Sazonov D M Antenny 2-e izd., pererab. i dop. (M.: Energiya, 1975)
  118. Klimov V V, Guzatov D V Kvantovaya Elektronika 37 209 (2007); Klimov V V, Guzatov D V Quantum Electron. 37 209 (2007)
  119. Klimov V V, Guzatov D V Phys. Rev. B 75 024303 (2007)
  120. Klimov V V, Guzatov D V Appl. Phys. A 89 305 (2007)
  121. Guzatov D V, Klimov V V New J. Phys. 13 053034 (2011)
  122. Lee K-G et al Opt. Express 20 23331 (2012)
  123. Belacel C et al Nano Lett. 13 1516 (2013)
  124. Akselrod G M et al Nat. Photon. 8 835 (2014)
  125. Eliseev S P i dr Pis’ma ZhETF 105 545 (2017); Eliseev S P et al JETP Lett. 105 577 (2017)
  126. Eliseev S P i dr Pis’ma ZhETF 103 88 (2016); Eliseev S P et al JETP Lett. 103 82 (2016)
  127. Huang J-S et al Nat. Commun. 1 150 (2010)
  128. Regler A et al J. Nanophoton. 10 033509 (2016)
  129. Lyamkina A A "Struktury metallicheskii klaster - kvantovaya tochka, vyrashchennye nanokapel’noi molekulyarno-luchevoi epitaksiei" Diss. ... kand. fiz.-mat. nauk (Novosibirsk: In-t fiziki poluprovodnikov im. A.V. Rzhanova SO RAN, 2015)
  130. Giannini V, Sánchez-Gil J A Opt. Lett. 33 899 (2008)
  131. Andersen S K H et al ACS Photon. 5 692 (2018)
  132. Kan Y et al ACS Photon. 7 1111 (2020)
  133. Curto A G et al Science 329 930 (2010)
  134. Novotny L, van Hulst N Nat. Photon. 5 83 (2011)
  135. Biagioni P, Huang J-S, Hecht B Rep. Prog. Phys. 75 024402 (2012)
  136. Filonov D S et al Appl. Phys. Lett. 100 201113 (2012)
  137. Ghanim A M et al IEEE Photon. J. 8 5501712 (2016)
  138. Meng Z et al J. Nanophoton. 11 016005 (2017)
  139. Ge D et al Nat. Commun. 11 3414 (2020)
  140. Queiroz da Costa K et al "Wireless optical nanolinks with Yagi-Uda and dipoles plasmonic nanoantennas" Nanoplasmonics (Ed. C J Bueno-Alejo) (Zaragoza: IntechOpen, 2020), Ch. 1
  141. Klimov V V Pis’ma ZhETF 78 943 (2003); Klimov V V JETP Lett. 78 471 (2003)
  142. Klimov V V, Guzatov D V, Treshin I V Phys. Rev. 91 023834 (2015)
  143. Klimov V V Phys. Rev. Appl. 12 014049 (2019)
  144. Guzatov D V, Klimov V V Kvantovaya Elektronika 46 634 (2016); Guzatov D V, Klimov V V Quantum Electron. 46 634 (2016)
  145. Rusak E et al Nat. Commun. 10 5775 (2019)
  146. Caldwell J D et al Nanophotonics 4 44 (2015)
  147. Tassin P et al Nat. Photon. 6 259 (2012)
  148. Hsieh W T et al ACS Photon. 5 2541 (2018)
  149. Li T et al Opt. Lett. 43 4465 (2018)
  150. Khurgin J B Nanophotonics 7 305 (2018)
  151. Silicon Photonics, Business Situation Report, Prepared by EAF LLC, February, 2017, https://www.academia.edu/35334885/Silicon_Photonics_Business_Situation_Report
  152. Pavesi L, Lockwood D J (Eds) Silicon Photonics (Berlin: Springer, 2004)
  153. Atabaki A H et al Nature 556 349 (2018)
  154. Koch U et al Nat. Electron. 3 338 (2020)
  155. Tower Semiconductor: Where Analog and Value Meet. Silicon Photonics (SiPho), https://towersemi.com/technology/rf-and-hpa/silicon-photonics-rf/
  156. Schniepp H, Sandoghdar V Phys. Rev. Lett. 89 257403 (2002)
  157. Zalogina A S et al Nanoscale 10 8721 (2018)
  158. Yang Y et al Nano Lett. 17 3238 (2017)
  159. Krasnok A et al Appl. Phys. Lett. 108 211105 (2016)
  160. Yannopapas V, Vitanov N V Phys. Rev. B 75 115124 (2007)
  161. Feng T et al J. Phys. Condens. Matter 30 124002 (2018)
  162. Wiecha P R et al Appl. Opt. 58 1682 (2019)
  163. Krasnok A E i dr Pis’ma ZhETF 94 635 (2011); Krasnok A E et al JETP Lett. 94 593 (2011)
  164. Filonov D S et al Appl. Phys. Lett. 100 201113 (2012)
  165. Krasnok A E et al Laser Photon. Rev. 9 385 (2015)
  166. Veselago V G Usp. Fiz. Nauk 92 517 (1967); Veselago V G Sov. Phys. Usp. 10 509 (1968)
  167. Shelby R A, Smith D R, Schultz S Science 292 77 (2001)
  168. Shelby R A et al Appl. Phys. Lett. 78 489 (2001)
  169. Veselago V G Usp. Fiz. Nauk 181 1201 (2011); Veselago V G Phys. Usp. 54 1161 (2011)
  170. Kil’dishev A V, Shalaev V M Usp. Fiz. Nauk 181 59 (2011); Kildishev A V, Shalaev V M Phys. Usp. 54 53 (2011)
  171. Xiao S et al Opt. Lett. 34 3478 (2009)
  172. Klimov V V Opt. Commun. 211 183 (2002)
  173. Maas R et al Nat. Photon. 7 907 (2013)
  174. Silvestre Castro C et al Opt. Lett. 45 3593 (2020)
  175. Szilard D et al Phys. Rev. B 94 134204 (2016)
  176. David C, Mortensen N A, Christensen J Sci. Rep. 3 2526 (2013)
  177. Jahani S, Zhao H, Jacob Z Appl. Phys. Lett. 113 021103 (2018)
  178. Bokut’ B V, Serdyukov A N, Fedrov F I Kristallogr. 15 1002 (1970); Bokut’ B V, Serdyukov A N, Fedorov F I Sov. Phys. Crystallogr. 15 871 (1971)
  179. Lindell I V et al Electromagnetic Waves In Chiral And Bi-Isotropic Media (Boston: Artech House, 1994)
  180. Pendry J B Science 306 1353 (2004)
  181. Zhang S et al Phys. Rev. Lett. 102 023901 (2009)
  182. Dong J et al Opt. Express 17 14172 (2009)
  183. "Chiral metamaterials" US patent 8271241B2, 18.09.2012; http://www.google.ch/patents/US8271241
  184. Wongkasem N, Akyurtlu A, Marx K 2006 IEEE Antennas and Propagation Society Intern. Symp. (Piscataway, NJ: IEEE, 2006) p. 757
  185. Carroll K C, Butel J, Morse S Jawetz, Melnick And Adelberg’s Medical Microbiology 27th ed. (New York: McGraw-Hill, 2015)
  186. Klimov V V et al Opt. Express 22 18564 (2014)
  187. Guzatov D V et al Opt. Express 25 6036 (2017)
  188. Guzatov D V, Klimov V V Kvantovaya Elektronika 44 873 (2014); Guzatov D V, Klimov V V Quantum Electron. 44 873 (2014)
  189. Guzatov D V, Klimov V V Kvantovaya Elektronika 44 1112 (2014); Guzatov D V, Klimov V V Quantum Electron. 44 1112 (2014)
  190. Asadchy V S, Díaz-Rubio A, Tretyakov S A Nanophotonics 7 1069 (2018)
  191. Graglia R D, Uslenghi P L E, Zich R E IEEE Trans. Antennas Propag. 39 83 (1991)
  192. Naik G V et al Proc. Natl. Acad. Sci. USA 111 7546 (2014)
  193. Korzeb K, Gajc M, Pawlak D A Opt. Express 23 25406 (2015)
  194. Fisher R K, Gould R W Phys. Rev. Lett. 22 1093 (1969)
  195. Kuehl H H Phys. Fluids 5 1095 (1962)
  196. Davidovich M V Usp. Fiz. Nauk 189 1249 (2019); Davidovich M V Phys. Usp. 62 1173 (2019)
  197. Lakhtakia A, Varadan V K, Varadan V V Int. J. Electron. 65 1171 (1988)
  198. Jacob Z et al Appl. Phys. B 100 215 (2010)
  199. Jacob Z, Smolyaninov I I, Narimanov E E Appl. Phys. Lett. 100 181105 (2012)
  200. Janowicz M, Żakowicz W Phys. Rev. A 50 4350 (1994)
  201. Novotny L J. Opt. Soc. Am. A 14 91 (1997)
  202. Poddubny A N, Belov P A, Kivshar Yu S Phys. Rev. A 84 023807 (2011)
  203. Iorsh I et al Phys. Lett. A 376 185 (2012)
  204. Kidwai O, Zhukovsky S V, Sipe J E Phys. Rev. A 85 053842 (2012)
  205. Chebykin A V et al Phys. Rev. A 93 033855 (2016)
  206. Li L et al Sci. Rep. 9 8473 (2019)
  207. Roth D J et al ACS Photon. 4 2513 (2017)
  208. Mirmoosa M S, Kosulnikov S Yu, Simovski C R J. Opt. 18 095101 (2016)
  209. Klimov V V et al Phys. Rev. A 93 033831 (2016)
  210. Guzatov D V, Klimov V V Kvantovaya Elektronika 47 730 (2017); Guzatov D V, Klimov V V Quant. Electron. 47 730 (2017)
  211. Morozov K M et al Sci. Rep. 9 9604 (2019)
  212. Wang W et al Appl. Phys. Lett. 114 021103 (2019)
  213. Langguth L et al Phys. Rev. Lett. 116 224301 (2016)
  214. Jia Y et al Adv. Mater. Technol. 5 1900970 (2020)
  215. Landi M et al Phys. Rev. Lett. 120 114301 (2018)
  216. Burov V A i dr Usp. Fiz. Nauk 181 1205 (2011); Burov V A et al Phys. Usp. 54 1165 (2011)
  217. Schmidt M K et al Phys. Rev. Lett. 121 064301 (2018)
  218. Zhou X, Liu X, Hu G Theor. Appl. Mech. Lett. 2 041001 (2012)
  219. Oh J H et al Sci. Rep. 6 23630 (2016)
  220. Chen Y et al Nat. Commun. 11 3681 (2020)
  221. MIMiCRA: Metamaterial Inspired Microwave Conformal Radar Antenna, https://www.eda.europa.eu/info-hub/press-centre/latest-news/2014/09/15/eda-project-shows-how-metamaterials-can-boost-the-performance-of-antennas
  222. Tayfeh Aligodarz M, Rashidian A, Klymyshyn D "Meta-material resonator antennas" Patent WO2014117259A1 (2014)
  223. Chowdhury A et al Nat. Commun. 11 2400 (2020)
  224. Sansa M et al Nat. Commun. 11 3781 (2020)
  225. Zhang J et al Nano Lett. 7 2101 (2007)
  226. Badugu R, Descrovi E, Lakowicz J R Anal. Biochem. 445 1 (2014)
  227. Silva Neto M B et al Phys. Rev. B 96 235143 (2017)
  228. Kadochkin A S et al Laser Photon. Rev. 12 1800042 (2018)
  229. Siew S Y et al J. Lightwave Technol. 39 4374 (2021)
  230. Reed G T, Knights A P Silicon Photonics: An Introduction (Chichester: John Wiley, 2004)
  231. Inphi Qualified TowerJazz for Production of Advanced Silicon Photonics Integrated Circuits (PICS) for Data Center Connectivity, https://towersemi.com/2019/12/04/04122019/
  232. Cui R, Shalaginov M, Shalaev V Proc. of the Summer Undergraduate Research Fellowship, SURF, Symp., 6 August 2015, Purdue Univ., West Lafayette, Indiana, USA; https://pdfs.semanticscholar.org/b52a/7c863464a158b72e8a024ff56e5ea3b1a928.pdf?_ga=2.206728723.1487149390.1595760370-1282702488.1595760370
  233. Wu H et al Adv. Opt. Mater. 7 1900334 (2019)
  234. Wu S et al Nature 520 69 (2015)
  235. Ramezani M et al Optica 4 31 (2017)
  236. Huang K C Y et al Nat. Photon. 8 244 (2014)
  237. Bozhevolnyi S I, Khurgin J B Optica 3 1418 (2016)
  238. Kaupp H et al Phys. Rev. Appl. 6 054010 (2016)
  239. Gallego J et al Phys. Rev. Lett. 121 173603 (2018)
  240. Riedel D et al Phys. Rev. X 7 031040 (2017)
  241. Dousse A et al Nature 466 217 (2010)
  242. Mok W-K et al Phys. Rev. A 99 053847 (2019)
  243. Furno M et al Phys. Rev. B 85 115205 (2012)
  244. Valenta J et al Sci. Rep. 9 11214 (2019)
  245. Tsakmakidis K L et al Opt. Express 24 17916 (2016)
  246. Chernozatonskii L A, Artyukh A A Usp. Fiz. Nauk 188 3 (2018); Chernozatonski L A, Artyukh A A Phys. Usp. 61 2 (2018)
  247. Behnia K Nat. Nanotechnol. 7 488 (2012)
  248. Molina-Sánchez A et al Nano Lett. 17 4549 (2017)
  249. Wu Z et al Adv. Mater. 31 1904132 (2019)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions