Issues

 / 

2021

 / 

October

  

Reviews of topical problems


Hypervelocity stars: theory and observations

  a,   b, §  b
a Institute of Astronomy, Russian Academy of Sciences, ul. Pyatnitskaya 48, Moscow, 119017, Russian Federation
b Russian Federal Nuclear Center ‘E.N. Zababakhin All-Russia Scientific Research Institute of Technical Physics’, PO Box 245, Snezhinsk, Chelyabinsk Region, Russian Federation

Relativistic velocity is a kinematic feature of micro-objects (elementary particles). Their application to macro objects (stars, planets, asteroids, neutron stars, and stellar-mass black holes) is currently under scientific discussion. This potential was recognized after Warren Brown discovered hypervelocity stars (HVSs) at the beginning of the 21st century. Jack Hills predicted these stars in 1988 due to the dynamical capture of a binary star by the central supermassive black hole (SMBH). The acceleration mechanism due to momentum exchange in the classical three-body problem provides the kinetic resource for HVS formation by the gravitational capture of the remaining component. The present threshold of the anomalous stellar kinematics exceeds ~1700 km s−1 and can be reproduced by some mechanisms as alternatives to Hills's scenario. HVSs can arise due to the collisional evolution of stellar clusters, supernova explosions in close binary stars, the orbital instability of triple stars, stellar captures from other galaxies, etc. Scenarios with the participation of black holes with masses ranging from stellar values to several billion solar masses are the most promising for the generation of anomalously high stellar velocities. Hills's scenario has a special place in HVS studies, because, being based on the accidental capture of a binary star by the SMBH, it does not relate to the problem of the galactic center population. This scenario predicts self-consistent statistics of HVSs and captured stars which may be identified with S-stars. The discovery of S-stars played an essential role in studies of the galactic center; their dynamics have independently provided incontestable proof of the SMBH's existence. This review briefly discusses the history of the discovery and investigation of HVSs and S-stars, provides an account of their observational statistics, and describes their modeling methods in the classical three-body and N body problems. We study the limits of the effective acceleration of stars in the classical Hills scenario and the modified mechanism that allows a change of one of the binary components to another SMBH. The acceleration acquired by the star in a mutual field of two SMBHs can produce stars with relativistic velocitie (1/2c—2/3c). Using a self-consistent probabilistic model combining the classical and modified Hills scenarios, we predict the formation probability of HVSs in the Galaxy and of extragalactic stars with relativistic velocities. We discuss the prospects of searches for stars and asteroids with relativistic velocities by future space missions and using new knowledge about the Universe.

Fulltext pdf (1.1 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2020.11.038892
Keywords: kinematic anomaly, dynamical capture, Hills's scenario, S-stars, hypervelocity stars, stars with relativistic velocities, supermassive black hole, galaxies
PACS: 95.10.−a, 97.10.Wn, 98.62.Js (all)
DOI: 10.3367/UFNe.2020.11.038892
URL: https://ufn.ru/en/articles/2021/10/a/
000740826300001
2-s2.0-85123456326
Citation: Tutukov A V, Dryomova G N, Dremov V V "Hypervelocity stars: theory and observations" Phys. Usp. 64 967–989 (2021)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 28th, July 2020, revised: 19th, November 2020, 30th, November 2020

Îðèãèíàë: Òóòóêîâ À Â, Äðåìîâà Ã Í, Äðåìîâ Â Â «Ñâåðõñêîðîñòíûå çâ¸çäû: òåîðèÿ è íàáëþäåíèÿ» ÓÔÍ 191 1017–1043 (2021); DOI: 10.3367/UFNr.2020.11.038892

References (142) Cited by (1) Similar articles (20) ↓

  1. V.I. Dokuchaev “Birth and life of massive black holesSov. Phys. Usp. 34 (6) 447–470 (1991)
  2. A.V. Tutukov, A.M. Cherepashchuk “Evolution of close binary stars: theory and observationsPhys. Usp. 63 209–244 (2020)
  3. A.V. Tutukov, S.V. Vereshchagin “Destruction of astronomical systems: theory and observationsPhys. Usp. 66 859–884 (2023)
  4. P.B. Ivanov, E.V. Mikheeva et alInterferometric observations of supermassive black holes in the millimeter wave bandPhys. Usp. 62 423–449 (2019)
  5. O.K. Sil’chenko “Empirical scenarios of galaxy evolutionPhys. Usp. 65 1224–1247 (2022)
  6. V.V. Zhuravlev “Analytical models of relativistic accretion disksPhys. Usp. 58 527–555 (2015)
  7. A.G. Doroshkevich, V.N. Lukash, E.V. Mikheeva “A solution to the problems of cusps and rotation curves in dark matter halos in the cosmological standard modelPhys. Usp. 55 3–17 (2012)
  8. I.G. Dymnikova “Motion of particles and photons in the gravitational field of a rotating body (In memory of Vladimir Afanas’evich Ruban)Sov. Phys. Usp. 29 215–237 (1986)
  9. A.B. Aleksandrov, A.B. Dashkina et alSearch for weakly interacting massive dark matter particles: state of the art and prospectsPhys. Usp. 64 861–889 (2021)
  10. V.S. Beskin “Magnetohydrodynamic models of astrophysical jetsPhys. Usp. 53 1199–1233 (2010)
  11. V.N. Rudenko “Relativistic experiments in gravitational fieldsSov. Phys. Usp. 21 893–917 (1978)
  12. A.Y. Potekhin “Atmospheres and radiating surfaces of neutron starsPhys. Usp. 57 735–770 (2014)
  13. Yu.N. Efremov, A.D. Chernin “Large-scale star formation in galaxiesPhys. Usp. 46 1–20 (2003)
  14. A.M. Cherepashchuk “Masses of black holes in binary stellar systemsPhys. Usp. 39 759–780 (1996)
  15. B.M. Vladimirskii, A.M. Gal’per et alCygnus X-3: a powerful galactic source of hard radiationSov. Phys. Usp. 28 153–169 (1985)
  16. G. Wallis, K. Sauer et alInjection of high-current relativistic electron beams into plasma and gasSov. Phys. Usp. 17 492–506 (1975)
  17. Ya.B. Zel’dovich, I.D. Novikov “Relativistic astrophysics. IISov. Phys. Usp. 8 522–577 (1966)
  18. Ya.B. Zel’dovich, I.D. Novikov “Relativistic astrophysics. ISov. Phys. Usp. 7 763–788 (1965)
  19. G.N. Makarov “Towards molecular laser separation of uranium isotopesPhys. Usp. 65 531–566 (2022)
  20. A.E. Dubinov, I.Yu. Kornilova, V.D. Selemir “Collective ion acceleration in systems with a virtual cathodePhys. Usp. 45 1109–1129 (2002)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions