Issues

 / 

2021

 / 

October

  

Reviews of topical problems


Hypervelocity stars: theory and observations

  a,   b, §  b
a Institute of Astronomy, Russian Academy of Sciences, ul. Pyatnitskaya 48, Moscow, 119017, Russian Federation
b Russian Federal Nuclear Center ‘E.N. Zababakhin All-Russia Scientific Research Institute of Technical Physics’, PO Box 245, Snezhinsk, Chelyabinsk Region, Russian Federation

Relativistic velocity is a kinematic feature of micro-objects (elementary particles). Their application to macro objects (stars, planets, asteroids, neutron stars, and stellar-mass black holes) is currently under scientific discussion. This potential was recognized after Warren Brown discovered hypervelocity stars (HVSs) at the beginning of the 21st century. Jack Hills predicted these stars in 1988 due to the dynamical capture of a binary star by the central supermassive black hole (SMBH). The acceleration mechanism due to momentum exchange in the classical three-body problem provides the kinetic resource for HVS formation by the gravitational capture of the remaining component. The present threshold of the anomalous stellar kinematics exceeds ~1700 km s−1 and can be reproduced by some mechanisms as alternatives to Hills's scenario. HVSs can arise due to the collisional evolution of stellar clusters, supernova explosions in close binary stars, the orbital instability of triple stars, stellar captures from other galaxies, etc. Scenarios with the participation of black holes with masses ranging from stellar values to several billion solar masses are the most promising for the generation of anomalously high stellar velocities. Hills's scenario has a special place in HVS studies, because, being based on the accidental capture of a binary star by the SMBH, it does not relate to the problem of the galactic center population. This scenario predicts self-consistent statistics of HVSs and captured stars which may be identified with S-stars. The discovery of S-stars played an essential role in studies of the galactic center; their dynamics have independently provided incontestable proof of the SMBH's existence. This review briefly discusses the history of the discovery and investigation of HVSs and S-stars, provides an account of their observational statistics, and describes their modeling methods in the classical three-body and N body problems. We study the limits of the effective acceleration of stars in the classical Hills scenario and the modified mechanism that allows a change of one of the binary components to another SMBH. The acceleration acquired by the star in a mutual field of two SMBHs can produce stars with relativistic velocitie (1/2c—2/3c). Using a self-consistent probabilistic model combining the classical and modified Hills scenarios, we predict the formation probability of HVSs in the Galaxy and of extragalactic stars with relativistic velocities. We discuss the prospects of searches for stars and asteroids with relativistic velocities by future space missions and using new knowledge about the Universe.

Fulltext pdf (1.1 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2020.11.038892
Keywords: kinematic anomaly, dynamical capture, Hills's scenario, S-stars, hypervelocity stars, stars with relativistic velocities, supermassive black hole, galaxies
PACS: 95.10.−a, 97.10.Wn, 98.62.Js (all)
DOI: 10.3367/UFNe.2020.11.038892
URL: https://ufn.ru/en/articles/2021/10/a/
000740826300001
2-s2.0-85123456326
Citation: Tutukov A V, Dryomova G N, Dremov V V "Hypervelocity stars: theory and observations" Phys. Usp. 64 967–989 (2021)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 28th, July 2020, revised: 19th, November 2020, 30th, November 2020

Îðèãèíàë: Òóòóêîâ À Â, Äðåìîâà Ã Í, Äðåìîâ Â Â «Ñâåðõñêîðîñòíûå çâ¸çäû: òåîðèÿ è íàáëþäåíèÿ» ÓÔÍ 191 1017–1043 (2021); DOI: 10.3367/UFNr.2020.11.038892

References (142) ↓ Cited by (1) Similar articles (20)

  1. Curtis H D Bull. Natl. Res. Council 2 171 (1921)
  2. Shapley H Bull. Natl. Res. Council 2 194 (1921)
  3. Kapteyn J C, Kapteyn W Publ. Kapteyn Astron. Lab. Groningen 5 1 - 87 (1900)
  4. Lindblad B Arkiv Mat. Astron. Fys. 23A (18) 12 (1933)
  5. Oort J H Bull. Astron. Inst. Netherlands 4 269 (1928)
  6. Baade W Sci. Am. 195 (3) 92 (1956)
  7. Zwicky F Morphological Astronomy (Berlin: Springer, 1957)
  8. Peri C S et al Rev. Mexicana Astron. Astrofis. Conf. 40 156 (2011)
  9. Cordes J M, Romani R W, Lundgren S C Nature 362 133 (1993)
  10. Lacy J H, Achtermann J M, Serabyn E Astrophys. J. Lett. 380 L71 (1991)
  11. McGinn M T et al Infrared Spectroscopy in Astronomy. Proc. of the 22nd Eslab Symp., Salamanca, Spain, 7 - 9 December 1988 (European Space Agency Special Publ.) Vol. 290 (Ed. B H Kaldeich) (Paris: European Space Agency, 1989) p. 421
  12. Eckart A, Genzel R Nature 383 415 (1996)
  13. Hills J G Nature 331 687 (1988)
  14. Schödel R et al Astrophys. J. 596 1015 (2003)
  15. Brown W et al Astrophys. J. 622 L33 (2005)
  16. Gualandris A, Zwart S P, Sipior M S Mon. Not. R. Astron. Soc. 363 223 (2005)
  17. Bromley B C et al Astrophys. J. 653 1194 (2006)
  18. Baumgardt H, Gualandris A, Zwart S P Mon. Not. R. Astron. Soc. 372 174 (2006)
  19. O’Leary R M, Loeb A Mon. Not. R. Astron. Soc. 383 86 (2008)
  20. Sherwin B D, Loeb B, O’Leary R M Mon. Not. R. Astron. Soc. 386 1179 (2008)
  21. Kenyon S J et al Astrophys. J. 680 312 (2008)
  22. Abadi M G, Navarro J F, Steinmetz M Astrophys. J. 691 L63 (2009)
  23. Zubovas K, Wynn G A, Gualandris A Astrophys. J. 771 118 (2013)
  24. Šubr L, Haas J Astrophys. J. 786 121 (2014)
  25. Capuzzo-Dolcetta R, Fragione G Mon. Not. R. Astron. Soc. 454 2677 (2015)
  26. Dremova G N, Dremov V V, Tutukov A V Astron. Zhurn. 91 353 (2014); Dremova G N, Dremov V V, Tutukov A V Astron. Rep. 58 291 (2014)
  27. Wu X et al Mon. Not. R. Astron. Soc. 386 2199 (2008)
  28. Miralda-Escudé J, Gould A Astrophys. J. 545 847 (2000)
  29. Sesana A, Haardt F, Madau P Astrophys. J. 660 546 (2007)
  30. Chandrasekhar S Astrophys. J. 97 255 (1943)
  31. Gillessen S Intern. Workshop Modest-13, Star Clusters Across Cosmic Time, Almaty, Kazakhstan, August 19 - 23, 2013. Abstracts (Almaty: Fesenkov Astrophysical Institute, 2013) p. 23; http://aphi.kz/wp-content/uploads/2015/07/MODEST-13-Booklet.pdf
  32. Ghez A M et al Astrophys. J. 620 744 (2005)
  33. Eisenhauer F et al Astrophys. J. 628 246 (2005)
  34. Gillessen S et al Astrophys. J. 837 30 (2017)
  35. Boubert D et al Mon. Not. R. Astron. Soc. 479 2789 (2018)
  36. Brown W R et al Astrophys. J. 866 39 (2018)
  37. Brown W, Geller M J, Kenyon S J Astrophys. J. 787 89 (2014)
  38. Capuzzo-Dolcetta R, Fragione G Mon. Not. R. Astron. Soc. 454 2677 (2015)
  39. Marchetti T et al Mon. Not. R. Astron. Soc. 470 1388 (2017)
  40. Koposov S E et al Mon. Not. R. Astron. Soc. 491 2465 (2020)
  41. Guillochon J, Loeb A Astrophys. J. 806 124 (2015)
  42. Dremova G N, Dremov V V, Tutukov A V Astron. Zhurn. 94 580 (2017); Dremova G N, Dremov V V, Tutukov A V Astron. Rep. 61 573 (2017)
  43. Schödel R et al Nature 419 694 (2002)
  44. Ren J et al Mon. Not. R. Astron. Soc. 499 3399 (2020)
  45. Dremova G N, Dremov V V, Tutukov A V Astron. Zhurn. 95 867 (2018); Dryomova G N, Dryomov V V, Tutukov A V Astron. Rep. 62 971 (2018)
  46. Blaauw A Bull. Astron. Inst. Netherlands 15 265 (1961)
  47. Poveda A, Ruiz J, Allen C Boletin Observ. Tonantzintla Tacubaya 4 86 (1967)
  48. Napiwotzki R, Silva D V Memorie Soc. Astron. Italiana 83 272 (2012); Napiwotzki R, Silva D V arXiv:1109.4116
  49. Heber E et al Astron. Astrophys. 483 L21 (2008)
  50. Lynden-Bell D, Rees M J Mon. Not. R. Astron. Soc. 152 461 (1971)
  51. Kilic M et al Mon. Not. R. Astron. Soc. 434 3582 (2013)
  52. Tutukov A V, Fedorova A V Astron. Zhurn. 86 902 (2009); Tutukov A V, Fedorova A V Astron. Rep. 53 839 (2009)
  53. Bardeen J M, Press W H, Teukolsky S A Astrophys. J. 178 347 (1972)
  54. Yu Q, Tremaine S Astrophys. J. 599 1129 (2003)
  55. Dremova G N i dr Astron. Zhurn. 92 907 (2015); Dremova G N Astron. Rep. 59 1019 (2015)
  56. Verlet L, Weis J-J Phys. Rev. A 5 939 (1972)
  57. Fellhauer M et al Astrophys. J. 651 167 (2006)
  58. Carter B, Luminet J P Mon. Not. R. Astron. Soc. 212 23 (1985)
  59. Lynden-Bell D Nature 223 690 (1969)
  60. Dokuchaev V I, Ozernoi L M Pis’ma Astron. Zhurn. 3 391 (1977); Dokuchaev V I, Ozernoi L M Sov. Astron. Lett. 3 209 (1977)
  61. Miles P, Coughlin E, Nixon C Astrophys. J. 899 36 (2020)
  62. Mainetti D et al Astron. Astrophys. 600 A124 (2017)
  63. Ivanov P B, Novikov I D Astrophys. J. 549 467 (2001)
  64. Guillochon J, Ramirez-Ruiz E Astrophys. J. 767 25 (2013)
  65. Dryomova G, Dryomov V, Tutukov A Baltic Astron. 24 1 (2015)
  66. Dremova G N, Dremov V V, Tutukov A V Astron. Zhurn. 93 685 (2016); Dremova G N, Dremov V V, Tutukov A V Astron. Rep. 60 695 (2016)
  67. Sofue Y, Rubin V Annu. Rev. Astron. Astrophys. 39 137 (2001)
  68. Dremova G N, Dremov V V, Tutukov A V Astron. Zhurn. 96 866 (2019); Dremova G N, Dremov V V, Tutukov A V Astron. Rep. 63 862 (2019)
  69. Loose H H, Krügel E, Tutukov A Astron. Astrophys. 105 342 (1982)
  70. Fragione G, Capuzzo-Dolcetta R, Kroupa P Mon. Not. R. Astron. Soc. 467 451 (2017)
  71. Shipp N et al (DES Collab.) Am. Astron. Soc. AAS Meeting (231) 212.05 (2018)
  72. Iben I (Jr.), Tutukov A V Astrophys. J. 284 719 (1984)
  73. Popova E I, Tutukov A V, Yungelson L R Astrophys. Space Sci. 88 55 (1982)
  74. Svechnikov M A i dr Nauchnye Informatsii 67 15 (1989)
  75. Duquennoy A, Mayor M Astron. Astrophys. 248 485 (1991)
  76. Kobulnicky H, Fryer C Astron. Astrophys. 670 747 (2007)
  77. Kraicheva Z T i dr Astron. Zhurn. 55 1176 (1978); Kraicheva Z T et al Sov. Astron. 22 670 (1978)
  78. Scalo J M Protostars And Planets II (Eds D C Black, M S Matthews) (Tucson, AZ: Univ. Arizona Press, 1985) p. 201
  79. Svechnikov M A Issledovanie Effektov Vzaimodeistviya v Tesnykh Dvoinykh Sistemakh s Nerelyativistskimi Komponentami (Tallin: Valgus, 1990) p. 26
  80. Salpeter E E Astrophys. J. 121 161 (1955)
  81. Kroupa P Mon. Not. R. Astron. Soc. 322 231 (2001)
  82. Perets H B Astrophys. J. 690 795 (2009)
  83. Aharon D, Battistu A M, Perets H B Astrophys. J. 823 137 (2016)
  84. Lacy J et al Astrophys. J. 241 132 (1980)
  85. Fridman A M, Yanchenko S G Astron. Zhurn. 86 1043 (2009); Fridman A M, Yanchenko S G Astron. Rep. 53 969 (2009)
  86. Plewa P et al Mon. Not. R. Astron. Soc. 453 3234 (2015)
  87. Chatzopoulos S et al Mon. Not. R. Astron. Soc. 447 948 (2015)
  88. Gillessen S et al The Messenger (120) 26 (2005)
  89. Gillessen S et al Astrophys. J. 692 1075 (2009)
  90. Ghez A M et al Astrophys. J. 689 1044 (2008)
  91. Abuter R et al (GRAVITY Collab.) Astron. Astrophys. 615 L15 (2018)
  92. Peißker F, Eckart A, Parsa M Astrophys. J. 889 61 (2020)
  93. Parsa M et al Astrophys. J. 845 22 (2017)
  94. Bambi C Phys. Rev. D 83 103003 (2011)
  95. Akiyama K et al (The Event Horizon Telescope Collab.) Astrophys. J. Lett. 875 L1 (2019)
  96. Amorim A et al (GRAVITY Collab.) Phys. Rev. Lett. 122 101102 (2019)
  97. Balick B, Brown R L Astrophys. J. 194 265 (1974)
  98. Abuter R et al (The GRAVITY Collab.) Astron. Astrophys. 625 L10 (2019)
  99. Gillessen S et al Astrophys. J. 871 126 (2019)
  100. Bower G C et al Astrophys. J. 588 331 (2003)
  101. Baganoff F K et al Astrophys. J. 591 891 (2003)
  102. Falcke H et al Astrophys. J. 499 731 (1998)
  103. von Fellenberg S D et al Astrophys. J. 862 129 (2018)
  104. Gunn J E et al Astron. J. 131 2332 (2006)
  105. Yanny B et al Astrophys. J. 540 825 (2000)
  106. Fukugita M et al Astrophys. J. 111 174 (1996)
  107. Brown W R et al Astrophys. J. 647 303 (2006)
  108. Yanny B et al Astrophys. J. 137 4377 (2009)
  109. Palladino L E et al Astrophys. J. 780 7 (2014)
  110. Li Y-B et al Res. Astron. Astrophys. 15 1364 (2015)
  111. Cui X-Q et al Res. Astron. Astrophys. 12 1197 (2012)
  112. Munn J A et al Astron. J. 136 895 (2008)
  113. Aihara H et al Astrophys. J. Suppl. 193 29 (2011)
  114. Castelli F, Kurucz R L astro-ph/0405087
  115. Brown W R, Geller M J, Kenyon S J Astrophys. J. 751 55 (2012)
  116. Lu Y, Zhang F, Yu Q Astrophys. J. 709 1356 (2010)
  117. Arenou F et al Astron. Astrophys. 599 A50 (2017)
  118. Luri X et al Astron. Astrophys. 616 A9 (2018)
  119. Katz D et al (Gaia Collab.) Astron. Astrophys. 616 A11 (2018)
  120. Antoja T et al Nature 561 360 (2018)
  121. Bovy J Astrophys. J. Suppl. 216 29 (2015)
  122. Marchetti T, Rossi E M, Brown A G A Mon. Not. R. Astron. Soc. 490 157 (2019)
  123. Hirsch H A et al Astron. Astrophys. 444 L61 (2005)
  124. Justham S et al Astron. Astrophys. 493 1081 (2009)
  125. Geier S et al Science 347 1126 (2015)
  126. Vennes S et al Science 357 680 (2017)
  127. Raddi R et al Mon. Not. R. Astron. Soc. 479 L96 (2018)
  128. Edelmann H et al Astrophys. J. 634 L181 (2005)
  129. Abbott B P et al (LIGO Scientific Collab. and Virgo Collab.) Phys. Rev. Lett. 116 131102 (2016)
  130. Barrabès C, Hogan P A Class. Quantum Grav. 21 405 (2003)
  131. Rice M, Laughlin G Astrophys. J. Lett. 884 L22 (2019)
  132. Guzik P et al Nat. Astron. 4 53 (2020)
  133. Clanton C, Gaudi B S Astrophys. J. 834 46 (2017)
  134. Burgasser A et al Protostars And Planets V (Eds B Reipurth, D Jewitt, K Keil) (Tucson, AZ: Univ. Arizona Press, 2007) p. 951
  135. NASA. James Webb Space Telescope, https://www.jwst.nasa.gov
  136. Euclid Consortium, https://www.euclid-ec.org/
  137. NASA. Nancy Grace Roman Space Telescope, https://roman.gsfc.nasa.gov/about.html
  138. Giant Magellan Telescope, https://www.gmto.org/
  139. Thirty Meter Telescope International Observatory, https://www.tmt.org
  140. European Southern Observatory. Extremely large telescopes, https://www.eso.org/public/teles-instr/elt
  141. Siraj A, Loeb A Astrophys. J. Lett. 872 L10 (2019); Siraj A, Loeb A arXiv:1906.03270
  142. Siraj A, Loeb A Acta Astronautica 173 53 (2020)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions