Methodological notes

Security of the decoy state method for quantum key distribution

 a, b,  c, a, b, d,  c, a, d,  c, d
a V.A. Steklov Mathematical Institute, Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991, Russian Federation
b National University of Science and Technology "MISIS", Leninskiiprosp. 4, Moscow, 119049, Russian Federation
c Moscow Institute of Physics and Technology (National Research University), Institutskii per. 9, Dolgoprudny, Moscow Region, 141701, Russian Federation
d International Center for Quantum Optics and Quantum Technologies (the Russian Quantum Center), ul. Novaya 100, Skolkovo, Moscow Region, 143025, Russian Federation

Quantum cryptography or, more precisely, quantum key distribution (QKD), is one of the advanced areas in the field of quantum technologies. The confidentiality of keys distributed with the use of QKD protocols is guaranteed by the fundamental laws of quantum mechanics. This paper is devoted to the decoy state method, a countermeasure against vulnerabilities caused by the use of coherent states of light for QKD protocols whose security is proved under the assumption of single-photon states. We give a formal security proof of the decoy state method against all possible attacks. We compare two widely known attacks on multiphoton pulses: photon-number splitting and beam splitting. Finally, we discuss the equivalence of polarization and phase coding.

Fulltext pdf (635 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2020.11.038882
Keywords: quantum cryptography, quantum key distribution, BB84, decoy states
PACS: 03.67.−a, 03.67.Dd, 03.67.Hk (all)
DOI: 10.3367/UFNe.2020.11.038882
Citation: Trushechkin A S, Kiktenko E O, Kronberg D A, Fedorov A K "Security of the decoy state method for quantum key distribution" Phys. Usp. 64 88–102 (2021)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 23rd, March 2020, revised: 19th, October 2020, 20th, November 2020

:   ,   ,   ,    « » 191 93–109 (2021); DOI: 10.3367/UFNr.2020.11.038882

References (63) Cited by (19) Similar articles (12) ↓

  1. I.M. Arbekov, S.N. Molotkov “Extraction of quantum randomness64 617–634 (2021)
  2. D.N. Klyshko “The Einstein-Podolsky-Rosen paradox for energy-time variables32 555–563 (1989)
  3. D.N. Klyshko “A simple method of preparing pure states of an optical field, of implementing the Einstein-Podolsky-Rosen experiment, and of demonstrating the complementarity principle31 74–85 (1988)
  4. A.M. Zheltikov “The critique of quantum mind: measurement, consciousness, delayed choice, and lost coherence61 1016–1025 (2018)
  5. Yu.L. Klimontovich “Entropy and information of open systems42 375–384 (1999)
  6. F.Ya. Khalili “Zero-point oscillations, zero-point fluctuations, and fluctuations of zero-point oscillations46 293–307 (2003)
  7. S.P. Vyatchanin, F.Ya. Khalili “’Interaction-free’ measurement: possibilities and limitations47 705–716 (2004)
  8. A.A. Rukhadze, V.P. Silin “From Lord Rayleigh to Professor A.A. Vlasov (from 1906 to 1945)62 691–698 (2019)
  9. M.V. Lebedev, O.V. Misochko “On the question of a classical analog of the Fano problem65 627–640 (2022)
  10. J. Gaite “The relativistic virial theorem and scale invariance56 919–931 (2013)
  11. A.V. Belinskii “Bell’s theorem for trichotomic observables40 305–316 (1997)
  12. L.V. Prokhorov “Quantization of the electromagnetic field31 151–162 (1988)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions