Issues

 / 

2021

 / 

January

  

Methodological notes


Security of the decoy state method for quantum key distribution

 a, b,  c, a, b, d,  c, a, d,  c, d
a V.A. Steklov Mathematical Institute, Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991, Russian Federation
b National University of Science and Technology "MISIS", Leninskii prosp. 4, Moscow, 119049, Russian Federation
c Moscow Institute of Physics and Technology (National Research University), Institutskii per. 9, Dolgoprudny, Moscow Region, 141701, Russian Federation
d International Center for Quantum Optics and Quantum Technologies (the Russian Quantum Center), ul. Novaya 100, Skolkovo, Moscow Region, 143025, Russian Federation

Quantum cryptography or, more precisely, quantum key distribution (QKD), is one of the advanced areas in the field of quantum technologies. The confidentiality of keys distributed with the use of QKD protocols is guaranteed by the fundamental laws of quantum mechanics. This paper is devoted to the decoy state method, a countermeasure against vulnerabilities caused by the use of coherent states of light for QKD protocols whose security is proved under the assumption of single-photon states. We give a formal security proof of the decoy state method against all possible attacks. We compare two widely known attacks on multiphoton pulses: photon-number splitting and beam splitting. Finally, we discuss the equivalence of polarization and phase coding.

Fulltext pdf (635 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2020.11.038882
Keywords: quantum cryptography, quantum key distribution, BB84, decoy states
PACS: 03.67.−a, 03.67.Dd, 03.67.Hk (all)
DOI: 10.3367/UFNe.2020.11.038882
URL: https://ufn.ru/en/articles/2021/1/f/
000632470400005
2-s2.0-85104180459
2021PhyU...64...88T
Citation: Trushechkin A S, Kiktenko E O, Kronberg D A, Fedorov A K "Security of the decoy state method for quantum key distribution" Phys. Usp. 64 88–102 (2021)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 23rd, March 2020, revised: 19th, October 2020, 20th, November 2020

Оригинал: Трушечкин А С, Киктенко Е О, Кронберг Д А, Федоров А К «Стойкость метода обманных состояний в квантовой криптографии» УФН 191 93–109 (2021); DOI: 10.3367/UFNr.2020.11.038882

References (63) ↓ Cited by (18) Similar articles (12)

  1. Alferov A P i dr Osnovy Kriptografii 2-e izd. (M.: Gelios ARV, 2002)
  2. Schneier B Applied Cryptography: Protocols, Algorithms, And Source Code In C 2nd ed. (New York: Wiley, 1996)
  3. Shor P W SIAM J. Comput. 26 1484 (1997)
  4. Anschuetz E et al Quantum Technology And Optimization Problems. QTOP 2019 (Lecture Notes in Computer Science) Vol. 11413 (Eds S Feld, C Linnhoff-Popien) (Cham: Springer, 2019) p. 74
  5. Mosca M IEEE Secur. Priv. 16 (5) 38 (2018)
  6. Bennet C H, Brassard G Proc. of the IEEE Intern. Conf. on Computers, Systems and Signal Processing, Bangalore, India (New York: IEEE, 1984) p. 175
  7. Ekert A K Phys. Rev. Lett. 67 661 (1991)
  8. Kholevo A S Matematicheskie Osnovy Kvantovoi Informatiki (Lektsionnye Kursy NOTs, Vyp. 30) (M.: MIAN, 2018)
  9. Wiesner S ACM SIGACT News 15 (1) 78 (1983)
  10. Mayers D Advances In Cryptology — CRYPTO 96. CRYPTO 1996 (Lecture Notes in Computer Science) Vol. 1109 (Ed. N Koblitz) (Berlin: Springer, 1996) p. 343; Mayers D quant-ph/9606003
  11. Mayers D J. ACM 48 351 (2001)
  12. Shor P W, Preskill J Phys. Rev. Lett. 85 441 (2000)
  13. Koashi M New J. Phys. 11 045018 (2009)
  14. Renner R "Security of quantum key distribution" Ph.D. Thesis (Zürich: ETH, 2005); Renner R quant-ph/0512258
  15. Tomamichel M et al Nat. Commun. 3 634 (2012)
  16. Tomamichel M, Leverrier A Quantum 1 14 (2017)
  17. Dupuis F, Fawzi O, Renner R Commun. Math. Phys. 379 867 (2020)
  18. Gisin N et al Rev. Mod. Phys. 74 145 (2002)
  19. Scarani V et al Rev. Mod. Phys. 81 1301 (2009)
  20. Bochkov M K, Trushechkin A S Phys. Rev. A 99 032308 (2019)
  21. Portmann C, Renner R arXiv:1409.3525
  22. Trushechkin A S Kvantovaya Elektronika 50 426 (2020); Trushechkin A S Quantum Electron. 50 426 (2020)
  23. Diamanti E et al Npj Quantum Inf. 2 16025 (2016)
  24. Huttner B et al Phys. Rev. A 51 1863 (1995)
  25. Brassard G et al Phys. Rev. Lett. 85 1330 (2000)
  26. Hwang W-Y Phys. Rev. Lett. 91 057901 (2003)
  27. Lo H-K, Ma X, Chen K Phys. Rev. Lett. 94 230504 (2005)
  28. Wang X-B Phys. Rev. Lett. 94 230503 (2005)
  29. Ma X et al Phys. Rev. A 72 012326 (2005)
  30. Curty M et al Nat. Commun. 5 3732 (2014)
  31. Lim C C W et al Phys. Rev. A 89 022307 (2014)
  32. Zhang Z et al Phys. Rev. A 95 012333 (2017)
  33. Trushechkin A S, Kiktenko E O, Fedorov A K Phys. Rev. A 96 022316 (2017)
  34. Lo H-K, Curty M, Tamaki K Nat. Photon. 8 595 (2014)
  35. Duplinskiy A V et al J. Russ. Laser Res. 39 113 (2018)
  36. Chen K, Ma J, Shi H Talk, ISO/IEC JTC1 SC27WG3SP Proposal, Security Requirements, Test and Evaluation Methods for the Decoy State BB84 Quantum Key Distribution (QKD), Berlin, Germany, 10/31/2017; ISO/IEC JTC 1/SC 27/WG 3 N 1537, 30th ISO/IEC JTC1/SC27 Working Group Meeting, H Shi, J Ma, G Pradel Wuhan, China, April 2018 30th Security Requirements, Test and Evaluation Methods for Quantum Key Distribution
  37. Molotkov S N, Kravtsov K S, Ryzhkin M I Zh. Eksp. Teor. Fiz. 155 636 (2019); Molotkov S N, Kravtsov K S, Ryzhkin M I J. Exp. Theor. Phys. 128 544 (2019)
  38. Molotkov S N, Kravtsov K S, Ryzhkin M I Zh. Eksp. Teor. Fiz. 156 379 (2019); Molotkov S N, Kravtsov K S, Ryzhkin M I J. Exp. Theor. Phys. 129 319 (2019)
  39. Devetak I, Winter A Proc. R. Soc. Lond. A 461 207 (2005)
  40. Kulik S P, Molotkov S N Laser Phys. Lett. 14 125205 (2017)
  41. Kilin S Ya Usp. Fiz. Nauk 169 507 (1999); Kilin S Ya Phys. Usp. 42 435 (1999)
  42. Valiev K A Usp. Fiz. Nauk 175 3 (2005); Valiev K A Phys. Usp. 48 1 (2005)
  43. Molotkov S N Usp. Fiz. Nauk 176 777 (2006); Molotkov S N Phys. Usp. 49 750 (2006)
  44. Lo H-K, Chau H F, Ardehali M J. Cryptology 18 133 (2005)
  45. Trushechkin A S et al Phys. Rev. A 97 012311 (2018)
  46. Fung C-H F, Ma X, Chau H F Phys. Rev. A 81 012318 (2010)
  47. Kiktenko E, Trushechkin A, Kurochkin Yu, Fedorov A J. Phys. Conf. Ser. 741 012081 (2016)
  48. Fedorov A K, Kiktenko E O, Trushechkin A S Lobachevskii J. Math. 39 992 (2018)
  49. Kiktenko E O et al Phys. Rev. Appl. 8 044017 (2017)
  50. Kronberg D A Matem. Vopr. Kriptogr. 8 (2) 77 (2017)
  51. Wegman M N, Carter J L J. Comput. Syst. Sci. 22 265 (1981)
  52. Kiktenko E O et al IEEE Trans. Inform. Theory 66 6354 (2020)
  53. Lieb E H Adv. Math. 11 267 (1973)
  54. Kholevo A S Kvantovye Sistemy, Kanaly, Informatsiya (M.: Izd-vo MTsNMO, 2010); Per. na angl. yaz., Holevo A S Quantum Systems, Channels, Information: A Mathematical Introduction (Berlin: De Gruyter, 2012)
  55. Cao Z et al New J. Phys. 17 053014 (2015)
  56. Lim C C W et al Phys. Rev. A 89 022307 (2014)
  57. Bennett C H et al J. Cryptology 5 3 (1992)
  58. Dušek M, Jahma M, Lütkenhaus N Phys. Rev. A 62 022306 (2000)
  59. Félix S et al J. Mod. Opt. 48 2009 (2001)
  60. Kronberg D A, Kurochkin Yu V Kvantovaya Elektronika 48 843 (2018); Kronberg D A, Kurochkin Yu V Quantum Electron. 48 843 (2018)
  61. Kronberg D A, Kiktenko E O, Fedorov A K, Kurochkin Yu V Kvantovaya Elektronika 47 163 (2017); Kronberg D A, Kiktenko E O, Fedorov A K, Kurochkin Yu V Quantum Electron. 47 163 (2017)
  62. Avanesov A S, Kronberg D A, Pechen A N P-Adic Num. 10 222 (2018)
  63. Kronberg D A, Nikolaeva A S, Kurochkin Y V, Fedorov A K Phys. Rev. A 101 032334 (2020)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions