Issues

 / 

2021

 / 

January

  

Methodological notes


Security of the decoy state method for quantum key distribution

 a, b,  c, a, b, d,  c, a, d,  c, d
a V.A. Steklov Mathematical Institute, Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991, Russian Federation
b National University of Science and Technology "MISIS", Leninskii prosp. 4, Moscow, 119049, Russian Federation
c Moscow Institute of Physics and Technology (National Research University), Institutskii per. 9, Dolgoprudny, Moscow Region, 141701, Russian Federation
d International Center for Quantum Optics and Quantum Technologies (the Russian Quantum Center), Skolkovo Innovation Center, Bolshoi Boulevard, Building 30, Block 1, 3rd floor, sectors G3, G7, Moscow, Moscow Region, 121205, Russian Federation

Quantum cryptography or, more precisely, quantum key distribution (QKD), is one of the advanced areas in the field of quantum technologies. The confidentiality of keys distributed with the use of QKD protocols is guaranteed by the fundamental laws of quantum mechanics. This paper is devoted to the decoy state method, a countermeasure against vulnerabilities caused by the use of coherent states of light for QKD protocols whose security is proved under the assumption of single-photon states. We give a formal security proof of the decoy state method against all possible attacks. We compare two widely known attacks on multiphoton pulses: photon-number splitting and beam splitting. Finally, we discuss the equivalence of polarization and phase coding.

Fulltext pdf (635 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2020.11.038882
Keywords: quantum cryptography, quantum key distribution, BB84, decoy states
PACS: 03.67.−a, 03.67.Dd, 03.67.Hk (all)
DOI: 10.3367/UFNe.2020.11.038882
URL: https://ufn.ru/en/articles/2021/1/f/
000632470400005
2-s2.0-85104180459
2021PhyU...64...88T
Citation: Trushechkin A S, Kiktenko E O, Kronberg D A, Fedorov A K "Security of the decoy state method for quantum key distribution" Phys. Usp. 64 88–102 (2021)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 23rd, March 2020, revised: 19th, October 2020, 20th, November 2020

Оригинал: Трушечкин А С, Киктенко Е О, Кронберг Д А, Федоров А К «Стойкость метода обманных состояний в квантовой криптографии» УФН 191 93–109 (2021); DOI: 10.3367/UFNr.2020.11.038882

References (63) Cited by (22) ↓ Similar articles (12)

  1. Mitra D, Shreekumar Ja et al Quantum Inf Process 23 (4) (2024)
  2. Makarov V, Abrikosov A et al Phys. Rev. Applied 22 (4) (2024)
  3. Khmelev A, Duplinsky A et al Opt. Express 32 11964 (2024)
  4. Barbyshev K  A, Duplinsky A  V et al Bull. Russ. Acad. Sci. Phys. 88 946 (2024)
  5. Fedorov A K, Kiktenko E O, Kolachevsky N N Uspekhi Fizicheskikh Nauk 194 960 (2024)
  6. [Fedorov A K, Kiktenko E O, Kolachevsky N N Phys. Usp. 67 906 (2024)]
  7. Fedorov A K Front. Quantum Sci. Technol. 2 (2023)
  8. Wu Yu, Liu Ju-H et al Phys. Rev. Applied 20 (3) (2023)
  9. Gupta Sh, Krishnan R K et al 2023 8th International Conference on Frontiers of Signal Processing (ICFSP), (2023) p. 63
  10. García C M I, Aguado D G et al 2023 International Conference on Military Communications and Information Systems (ICMCIS), (2023) p. 1
  11. Reutov A, Tayduganov A et al Entropy 25 1556 (2023)
  12. Fedorov A K, Kiktenko E O et al Uspekhi Fizicheskikh Nauk 193 1162 (2023)
  13. [Fedorov A K, Kiktenko E O et al Phys. Usp. 66 1095 (2023)]
  14. Kodukhov A D, Pastushenko V A et al Cryptography 7 38 (2023)
  15. Trinh P V, Carrasco-Casado A et al Commun Phys 5 (1) (2022)
  16. Eroshenko Yu N Phys.-Usp. 65 213 (2022)
  17. Kronberg D A, Kiktenko E O et al J. Exp. Theor. Phys. 134 533 (2022)
  18. Kronberg D A Quantum Electron. 51 928 (2021)
  19. Tayduganov A, Rodimin V et al Opt. Express 29 24884 (2021)
  20. Eroshenko Yu N Phys.-Usp. 64 216 (2021)
  21. Alshaer N, Nasr M E, Ismail T IEEE Photonics J. 13 1 (2021)
  22. Eroshenko Yu N Phys.-Usp. 64 321 (2021)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions