Reviews of topical problems

Topological insulators based on HgTe

 a, b,  c, b,  a, b,  d,  c,  c
a Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, prosp. Akad. Lavrenteva 13, Novosibirsk, 630090, Russian Federation
b Novosibirsk State University, ul. Pirogova2, Novosibirsk, 630090, Russian Federation
c Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, prosp. Lavrent'eva 13, Novosibirsk, 630090, Russian Federation
d Universidade de São Paulo, Instituto de Física, São Paulo, Brazil

The most interesting experimental results obtained in studies of 2D and 3D topological insulators (TIs) based on HgTe quantum wells and films are reviewed. In the case of 2D TIs, these include the observation of nonlocal ballistic and diffusion transport, the magnetic breakdown of 2D TIs, and an anomalous temperature dependence of edge-channel resistance. In 3D TIs, a record-setting high mobility (up to $5\times 10^5 $cm$^2 $V$^{-1}$ s$^{-1}$) of surface two-dimensional Dirac fermions (DFs) has been attained. This enabled determination of all of the TI's main parameters (volume gap and density of Dirac fermions on both of its surfaces) and provided information on the phase of the DF's Shubnikov—de Haas oscillations, which indicates the rigid topological coupling between the fermion's spin and momentum. Prospects for further research are discussed in the conclusion.

Fulltext is available at IOP
Keywords: topological insulators, edge state transport, quantum well, inverted energy spectrum
PACS: 73.43.Qt, 73.63.Hs (all)
DOI: 10.3367/UFNe.2019.10.038669
Citation: Kvon Z D, Kozlov D A, Olshanetsky E B, Gusev G M, Mikhailov N N, Dvoretsky S A "Topological insulators based on HgTe" Phys. Usp. 63 629–647 (2020)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 13th, May 2019, revised: 25th, September 2019, 4th, October 2019

:   ,   ,   ,   ,   ,    « HgTe» 190 673–692 (2020); DOI: 10.3367/UFNr.2019.10.038669

References (75) Cited by (4) Similar articles (20) ↓

  1. S.I. Vedeneev “Quantum oscillations in three-dimensional topological insulators60 385–401 (2017)
  2. V.T. Dolgopolov “Integer quantum Hall effect and related phenomena57 105–127 (2014)
  3. A.A. Shashkin “Metal-insulator transitions and the effects of electron-electron interactions in two-dimensional electron systems48 129–149 (2005)
  4. E.F. Sheka, N.A. Popova, V.A. Popova “Physics and chemistry of graphene. Emergentness, magnetism, mechanophysics and mechanochemistry61 645–691 (2018)
  5. N.G. Bebenin, R.I. Zainullina, V.V. Ustinov “Colossal magnetoresistance manganites61 719–738 (2018)
  6. S.Ya. Vetrov, I.V. Timofeev, V.F. Shabanov “Localized modes in chiral photonic structures63 33–56 (2020)
  7. V.S. Vavilov “Atomic migration and related changes in defect concentration and structure due to electronic subsystem excitations in semiconductors40 387–392 (1997)
  8. Yu.V. Kozlov, V.P. Martem’yanov, K.N. Mukhin “Neutrino mass problem: the state of the art40 807–842 (1997)
  9. E.P. Emets, A.E. Novoselova, P.P. Poluektov “In situ determination of the fractal dimensions of aerosol particles37 881–887 (1994)
  10. M.Yu. Kupriyanov, K.K. Likharev “Josephson effect in high-temperature superconductors and in structures based on them33 (5) 340–364 (1990)
  11. G.V. Fetisov “X-ray diffraction methods for structural diagnostics of materials: progress and achievements63 2–32 (2020)
  12. V.V. Lider “Precise determination of crystal lattice parameters63 907–928 (2020)
  13. L.M. Martyushev “aximum entropy production principle: history and current status64 558–583 (2021)
  14. V.M. Pudalov “Measurements of the magnetic properties of conduction electrons64 3–27 (2021)
  15. L.V. Doronina-Amitonova, I.V. Fedotov et alNeurophotonics: optical methods to study and control the brain58 345–364 (2015)
  16. N.A. Vinokurov, E.B. Levichev “Undulators and wigglers for production of radiation and other applications58 850–871 (2015)
  17. V.D. Lakhno “Pekar's ansatz and the strong coupling problem in polaron theory58 295–308 (2015)
  18. R.S. Berry, B.M. Smirnov “Modeling of configurational transitions in atomic systems56 973–998 (2013)
  19. A.V. Khomenko, I.A. Lyashenko “Statistical theory of the boundary friction of atomically flat solid surfaces in the presence of a lubricant layer55 1008–1034 (2012)
  20. V.N. Lukash, E.V. Mikheeva, A.M. Malinovsky “Formation of the large-scale structure of the Universe54 983–1005 (2011)

The list is formed automatically.

© 1918–2022 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions