Issues

 / 

2020

 / 

June

  

Reviews of topical problems


Ultrahard nanomaterials: myths and reality


Institute for High Pressure Physics, Russian Academy of Sciences, Kaluzhskoe shosse 14, Troitsk, Moscow, 108840, Russian Federation

The last 25 years has witnessed a wealth of publications on the creation of carbon materials whose compression bulk modulus and hardness are much higher than those of diamond. This review presents a critical analysis of these studies. Three groups of myths that have emerged lately are discussed. The first is related to the possibility of creating materials whose bulk moduli are significantly higher than those of diamond. The second group is devoted to 'experimentally measured' values of hardness, much higher than that of diamond. The third includes alleged 'theoretical' grounds for a several-fold (!) increase in the hardness of covalent substances due to the effects of quantum confinement. It is shown that materials whose elastic moduli significantly exceed those of diamond cannot in principle be produced under normal conditions. Issues surrounding the quantitative measurement of hardness are discussed; it is noted that the creation of obstacles to the movement of dislocations in nanomaterials may allow a 20—40% increase in the effective measured hardness of ultrahard materials. It is emphasized that alternative hypothetical approaches to increase hardness, for example, due to quantum confinement, actually have no physical grounds whatsoever. The highest mechanical characteristics of diamond are associated with reliably established physical laws, and any assertions regarding possible obtainment of materials whose elastic characteristics or hardness are several times greater than those of diamond may not be regarded as reliable to any extent or even science-based.

Fulltext pdf (1.1 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2019.07.038635
Keywords: elastic moduli, hardness, carbon materials, nanostructures, quantum confinement
PACS: 62.20.−x, 62.20.Qp (all)
DOI: 10.3367/UFNe.2019.07.038635
URL: https://ufn.ru/en/articles/2020/6/a/
000563842900001
2-s2.0-85091665976
2020PhyU...63..523B
Citation: Brazhkin V V "Ultrahard nanomaterials: myths and reality" Phys. Usp. 63 523–544 (2020)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 18th, April 2019, revised: 17th, July 2019, 26th, July 2019

Оригинал: Бражкин В В «Ультратвёрдые наноматериалы: мифы и реальность» УФН 190 561–584 (2020); DOI: 10.3367/UFNr.2019.07.038635

References (106) Cited by (13) Similar articles (20) ↓

  1. R.A. Andrievski “High-melting point compounds: new approaches and new resultsPhys. Usp. 60 276–289 (2017)
  2. V.V. Brazhkin, A.G. Lyapin et alWhere is the supercritical fluid on the phase diagram?Phys. Usp. 55 1061–1079 (2012)
  3. P.B. Sorokin, L.A. Chernozatonskii “Graphene-based semiconductor nanostructuresPhys. Usp. 56 105–122 (2013)
  4. A.I. Savvatimskii, S.V. Onufriev “Investigation of the physical properties of carbon under high temperatures (experimental studies)Phys. Usp. 63 1015–1036 (2020)
  5. R.A. Andrievski, A.M. Glezer “Strength of nanostructuresPhys. Usp. 52 315 (2009)
  6. E.A. Ekimov, M.V. Kondrin “Vacancy-impurity centers in diamond: perspectives of synthesis and applicationsPhys. Usp. 60 539–558 (2017)
  7. A.E. Galashev, O.R. Rakhmanova “Mechanical and thermal stability of graphene and graphene-based materialsPhys. Usp. 57 970–989 (2014)
  8. Yu.S. Nechaev “Metallic materials for the hydrogen energy industry and main gas pipelines: complex physical problems of aging, embrittlement, and failurePhys. Usp. 51 681–697 (2008)
  9. A.D. Pogrebnjak, A.P. Shpak et alStructures and properties of hard and superhard nanocomposite coatingsPhys. Usp. 52 29–54 (2009)
  10. L.P. Babich “Relativistic runaway electron avalanchePhys. Usp. 63 1188–1218 (2020)
  11. I.S. Aranson “Topological defects in active liquid crystalsPhys. Usp. 62 892–909 (2019)
  12. P.B. Ivanov, E.V. Mikheeva et alInterferometric observations of supermassive black holes in the millimeter wave bandPhys. Usp. 62 423–449 (2019)
  13. A.A. Bukharaev, A.K. Zvezdin et alStraintronics: a new trend in micro- and nanoelectronics and material sciencePhys. Usp. 61 1175–1212 (2018)
  14. D.S. Sanditov “Nature of Poisson's ratio of amorphous polymers and glasses and its relation to structure-sensitive propertiesPhys. Usp. 63 327–341 (2020)
  15. A.D. Pogrebnyak, M.A. Lisovenko et alProtective coatings with nanoscale multilayer architecture: current state and main trendsPhys. Usp. 64 253–279 (2021)
  16. A.V. Khomenko, I.A. Lyashenko “Statistical theory of the boundary friction of atomically flat solid surfaces in the presence of a lubricant layerPhys. Usp. 55 1008–1034 (2012)
  17. Yu.S. Nechaev “The distribution of carbon in steelsPhys. Usp. 54 465–471 (2011)
  18. L.V. Spivak “Synergy effects in the deformation response of thermodynamically open metal — hydrogen systemsPhys. Usp. 51 863–885 (2008)
  19. R.B. Morgunov “Spin micromechanics in the physics of plasticityPhys. Usp. 47 125–147 (2004)
  20. R.A. Andrievski “Nanostructures under extremesPhys. Usp. 57 945–958 (2014)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions