Issues

 / 

2020

 / 

June

  

Reviews of topical problems


Ultrahard nanomaterials: myths and reality


Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk, Moscow, Russian Federation

The last 25 years has witnessed a wealth of publications on the creation of carbon materials whose compression bulk modulus and hardness are much higher than those of diamond. This review presents a critical analysis of these studies. Three groups of myths that have emerged lately are discussed. The first is related to the possibility of creating materials whose bulk moduli are significantly higher than those of diamond. The second group is devoted to 'experimentally measured' values of hardness, much higher than that of diamond. The third includes alleged 'theoretical' grounds for a several-fold (!) increase in the hardness of covalent substances due to the effects of quantum confinement. It is shown that materials whose elastic moduli significantly exceed those of diamond cannot in principle be produced under normal conditions. Issues surrounding the quantitative measurement of hardness are discussed; it is noted that the creation of obstacles to the movement of dislocations in nanomaterials may allow a 20—40% increase in the effective measured hardness of ultrahard materials. It is emphasized that alternative hypothetical approaches to increase hardness, for example, due to quantum confinement, actually have no physical grounds whatsoever. The highest mechanical characteristics of diamond are associated with reliably established physical laws, and any assertions regarding possible obtainment of materials whose elastic characteristics or hardness are several times greater than those of diamond may not be regarded as reliable to any extent or even science-based.

Fulltext pdf (1.1 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2019.07.038635
Keywords: elastic moduli, hardness, carbon materials, nanostructures, quantum confinement
PACS: 62.20.−x, 62.20.Qp (all)
DOI: 10.3367/UFNe.2019.07.038635
URL: https://ufn.ru/en/articles/2020/6/a/
000563842900001
2-s2.0-85091665976
2020PhyU...63..523B
Citation: Brazhkin V V "Ultrahard nanomaterials: myths and reality" Phys. Usp. 63 523–544 (2020)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 18th, April 2019, revised: 17th, July 2019, 26th, July 2019

:    « : » 190 561–584 (2020); DOI: 10.3367/UFNr.2019.07.038635

References (106) ↓ Cited by (9) Similar articles (20)

  1. Brazhkin V V, Lyapin A G, Hemley R J Philos. Mag. A 82 231 (2002)
  2. Brazhkin V V, Lyapin A G Proc. Of The NATO Advanced Research Workshop On Innovative Superhard Materials And Sustainable Coatings, Kiev, Ukraine, 12-15 May 2004 (NATO Science Series, Ser. II) Vol. 200 (Eds J Lee, N Novikov) (Dordrecht: Springer, 2005) p. 1
  3. Brazhkin V V, Lyapin A G J. Superhard Mater. 34 400 (2012)
  4. Helmersson U et al J. Appl. Phys. 62 481 (1987)
  5. Blank V D i dr Zh. Eksp. Teor. Fiz. 114 1365 (1998); Blank V D et al JETP 87 741 (1998)
  6. Serebryanaya N R et al Solid State Commun. 118 183 (2001)
  7. Blank V et al Perspectives Of Fullerene Nanotechnology (Ed. E Osawa) (Dordrecht: Kluwer Acad. Publ., 2002) p. 223
  8. Blank V D et al Carbon 36 665 (1998)
  9. Blank V et al Diamond Related Mater. 7 427 (1998)
  10. Mezouar M et al Phys. Rev. B 68 193414 (2003)
  11. Talyzin A V et al Phys. Rev. B 71 115424 (2005)
  12. Brazhkin V V, Lyapin A G Usp. Fiz. Nauk 166 893 (1996); Brazhkin V V, Lyapin A G Phys. Usp. 39 837 (1996)
  13. Brazhkin V V i dr Usp. Fiz. Nauk 167 1019 (1997); Brazhkin V V et al Phys. Usp. 40 969 (1997)
  14. Popov M et al Carbon 76 250 (2014)
  15. Brazhkin V et al Nat. Mater. 3 576 (2004)
  16. Irifune T et al Nature 421 599 (2003)
  17. Sumiya H, Irifune T SEI Tech. Rev. (59) 52 (2005)
  18. Sumiya H, Irifune T SEI Tech. Rev. (66) 85 (2008)
  19. Sumiya H MRS Bull. 42 729 (2017)
  20. Dubrovinskaia N et al Appl. Phys. Lett. 87 083106 (2005)
  21. Dubrovinskaia N, Dub S, Dubrovinsky L Nano Lett. 6 824 (2006)
  22. Dubrovinskaia N et al Appl. Phys. Lett. 90 101912 (2007)
  23. Solozhenko V L, Kurakevych O O, Godec Y Le Adv. Mater. 24 1540 (2012)
  24. Telling R H et al Phys. Rev. Lett. 84 5160 (2000)
  25. Chacham H, Kleinman L Phys. Rev. Lett. 85 4904 (2000)
  26. Roundy D, Cohen M L Phys. Rev. B 64 212103 (2001)
  27. Umeno Y, Shiihara Y, Yoshikawa N J. Phys. Condens. Matter 23 385401 (2011)
  28. Luo X et al J. Phys. Chem. C 114 17851 (2010)
  29. Dub N et al J. Superhard Mater. 36 217 (2014)
  30. Gao F et al Phys. Rev. Lett. 91 015502 (2003)
  31. Chen X-Q et al Intermetallics 19 1275 (2011)
  32. Dai F-Z, Zhou Y Sci. Rep. 6 33085 (2016)
  33. Tian Y, Xu B, Zhao Z Int. J. Refract. Met. Hard Mater. 33 93 (2012)
  34. Aleksandrov I V i dr Zh. Eksp. Teor. Fiz. 93 680 (1987); Aleksandrov I V et al Sov. Phys. JETP 66 384 (1987)
  35. Anderson O L, Nafe J E J. Geophys. Res. 70 3951 (1965)
  36. Cohen M L Phys. Rev. B 32 7988 (1985)
  37. Stishov S M Philos. Mag. Lett. 80 125 (2000)
  38. Brazhkin V V Usp. Fiz. Nauk 179 393 (2009); Brazhkin V V Phys. Usp. 52 369 (2009)
  39. Thorpe M F J. Non-Cryst. Solids 57 355 (1983)
  40. Kelires P C Diamond Related Mater. 10 139 (2001)
  41. Zhu Q et al Phys. Rev. B 83 193410 (2011)
  42. Ruoff R S, Ruoff A L Nature 350 663 (1991)
  43. Ruoff R S, Ruoff A L Appl. Phys. Lett. 59 1553 (1991)
  44. Wang Y, Tománek D, Bertsch G F Phys. Rev. B 44 6562(R) (1991)
  45. Blank V D et al Nanotechnology 29 115603 (2018)
  46. Lyapin A G et al Appl. Phys. Lett. 83 3903 (2003)
  47. Popov M, Kulnitskiy B, Blank V Comprehensive Hard Mater. 3 515 (2014)
  48. Kvashnina Yu A et al J. Phys. Chem. Lett. 6 2147 (2015)
  49. Kvashnina Yu A et al Carbon 115 546 (2017)
  50. Manghnani M H et al Phys. Rev. B 64 121403(R) (2001)
  51. Lyapin A G et al Phys. Rev. B 54 R14242 (1996)
  52. Dubrovinsky L et al Nat. Commun. 3 1163 (2012)
  53. Dubrovinskaia N et al Sci. Adv. 1600341 (2016)
  54. Tanigaki K et al Nat. Commun. 4 2343 (2013)
  55. Erohin S V, Sorokin P B Appl. Phys. Lett. 107 121904 (2015)
  56. Eremets M I et al Appl. Phys. Lett. 87 141902 (2005)
  57. Landau L D, Lifshits E M Teoriya Uprugosti (M.: Nauka, 2001); Per. na angl. yaz., Landau L D, Lifshitz E M Theory Of Elasticity (Oxford: Pergamon Press, 1970)
  58. Chang Y-Y et al Phys. Earth Planet. Inter. 228 47 (2014)
  59. Mao W L et al Science 302 425 (2003)
  60. Wang Z et al Proc. Natl. Acad. Sci. USA 101 13699 (2004)
  61. Dub S N et al J. Superhard Mater. 39 88 (2017)
  62. Wang Y et al Eng. Fract. Mech. 75 4978 (2008)
  63. Wang Y, Tam P L, Shen Y G Thin Solid Films 516 7641 (2008)
  64. Sneddon I N Proc. Camb. Philos. Soc. Math. Phys. Sci. 44 492 (1948)
  65. Sneddon I N Int. J. Eng. Sci. 3 47 (1965)
  66. Gong J, Wu J, Guang Z J. Eur. Ceram. Soc. 19 2625 (1999)
  67. Teter D M MRS Bull. 23 22 (1998)
  68. Chung H-Y et al Appl. Phys. Lett. 92 261904 (2008)
  69. Gilman J J J. Appl. Phys. 46 5110 (1975)
  70. Gilman J J J. Appl. Phys. 39 6086 (1968)
  71. Siethoff H Appl. Phys. Lett. 65 174 (1994)
  72. Siethoff H J. Appl. Phys. 87 3301 (2000)
  73. Tse J S, Klug D D, Gao F Phys. Rev. B 73 140102(R) (2006)
  74. Jhi S-H et al Phys. Rev. Lett. 86 3348 (2001)
  75. Yamakov V et al Nat. Mater. 1 45 (2002)
  76. Sumiya H, Irifune T J. Mater. Res. 22 2345 (2007)
  77. Ohfuji H et al Phys. Chem. Miner. 39 543 (2012)
  78. Isobe F et al J. Nanomater. 2013 380165 (2013)
  79. Irifune T, Sumiya H Comprehensive Hard Mater. 3 173 (2014)
  80. Irifune T, Isobe F, Shinmei T Phys. Earth Planet. Inter. 228 255 (2014)
  81. Yan C et al Phys. Status Solidi A 201 R25 (2004)
  82. Tian Y et al Nature 493 385 (2013)
  83. Huang Q et al Nature 510 250 (2014)
  84. Xu B, Tian Y Sci. China Mater. 58 132 (2015)
  85. Xu B, Tian Y Acta Phys. Sinica 66 036201 (2017)
  86. Tian Y Book of Abstracts of AIRAPT 26th Conf., Bejing, China (Bejing: Institute of Physics, Chinese Academy of Sciences, 2017) p. 109
  87. Wang C, Jin Z M Book of Abstracts of Intern. Conf. on the Earth’s Deep Interior, Wuhan, China (Wuhan: Wuhan Univ., 2016)
  88. Yang B et al ACS Appl. Mater. Interfaces 10 42804 (2018)
  89. Dubrovinskaia N, Dubrovinsky L Nature 502 E1 (2013)
  90. Tian Y et al Nature 502 E1 (2013)
  91. Novikov A P (2018), Chastnoe soobshchenie
  92. Banerjee A et al Science 360 300 (2018)
  93. Lehmann V, Gösele U Appl. Phys. Lett. 58 856 (1991)
  94. Tsu R, Shen H, Dutta M Appl. Phys. Lett. 60 112 (1992)
  95. van Buuren T et al Appl. Phys. Lett. 63 2911 (1993)
  96. Wilcoxon J P, Samara G A, Provencio P N Phys. Rev. B 60 2704 (1999)
  97. Wang Y, Herron N Phys. Rev. B 42 7253 (1990)
  98. Raty J-Y et al Phys. Rev. Lett. 90 037401 (2003)
  99. Chang Y K et al Phys. Rev. Lett. 82 5377 (1999)
  100. Halperin W P Rev. Mod. Phys. 58 533 (1986)
  101. Efros Al L, Efros A L Fiz. Tekh. Poluprovodn. 16 1209 (1982); Efros Al L, Efros A L Sov. Phys. Semicond. 16 772 (1982)
  102. Lippens P E, Lannoo M Phys. Rev. B 39 10935 (1989)
  103. Kayanuma Y Phys. Rev. B 38 9797 (1988)
  104. Mizel A, Cohen M L Phys. Rev. B 56 6737 (1997)
  105. Gryaznov V G, Kaprelov A M, Romanov A E Pis’ma ZhTF 15 (2) 55 (1989); Gryaznov V G, Kaprelov A M, Romanov A E Tech. Phys. Lett. 15 39 (1989)
  106. Khvostantsev L G, Tsiok O B, Ustinov I V, Brazhkin V V Int. J. Refract. Met. Hard Mater. 54 1 (2016)

© 1918–2023 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions