Reviews of topical problems

Prospects for the synthesis of large single-crystal diamonds

Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation

The unique properties of diamond have stimulated the study of and search for its applications in many fields, including optics, optoelectronics, electronics, biology and electrochemistry. Whereas chemical vapor deposition allows the growth of polycrystalline diamond plates more than 200 mm in diameter, most current diamond application technologies require large size (25 mm and more) single crystal diamond substrates or films suitable for the photolithography process. This is quite a challenge because the largest diamond crystals currently available are 10 mm or less in size. This review examines three promising approaches to fabricating large-size diamond single crystals: growing large size single crystals, the deposition of heteroepitaxial diamond films on single crystal substrates, and the preparation of composite diamond substrates.

Fulltext is available at IOP
Keywords: single-crystal diamond, chemical vapor deposition, epitaxy
PACS: 68.55.A−,, 81.10.−h, 82.33.Ya (all)
DOI: 10.3367/UFNe.0185.201502b.0143
Citation: Khmelnitskii R A "Prospects for the synthesis of large single-crystal diamonds" Phys. Usp. 58 134–149 (2015)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 16th, April 2014, revised: 18th, June 2014, 24th, June 2014

Оригинал: Хмельницкий Р А «Перспективы выращивания монокристаллического алмаза большого размера» УФН 185 143–159 (2015); DOI: 10.3367/UFNr.0185.201502b.0143

References (132) Cited by (33) Similar articles (20) ↓

  1. E.A. Ekimov, M.V. Kondrin “Vacancy-impurity centers in diamond: perspectives of synthesis and applications60 539–558 (2017)
  2. A.E. Galashev, O.R. Rakhmanova “Mechanical and thermal stability of graphene and graphene-based materials57 970–989 (2014)
  3. V.S. Vavilov “Diamond in solid state electronics40 15–20 (1997)
  4. L.N. Dem’yanets “High-temperature superconductors: growth of single crystals34 (1) 36–73 (1991)
  5. P.V. Ratnikov, A.P. Silin “Two-dimensional graphene electronics: current status and prospects61 1139–1174 (2018)
  6. G.N. Makarov “Laser applications in nanotechnology: nanofabrication using laser ablation and laser nanolithography56 643–682 (2013)
  7. M.V. Kharlamova “Electronic properties of pristine and modified single-walled carbon nanotubes56 1047–1073 (2013)
  8. R.S. Berry, B.M. Smirnov “Modeling of configurational transitions in atomic systems56 973–998 (2013)
  9. V.L. Tsymbalenko “Amazing growth of helium crystal facets58 1059–1073 (2015)
  10. S.M. Stishov “Quantum effects in condensed matter at high pressure44 285–290 (2001)
  11. A.G. Syromyatnikov, S.V. Kolesnikov et alFormation and properties of metallic atomic chains and wires64 671–701 (2021)
  12. E.F. Sheka “Electron-vibrational spectra of molecules and crystals14 484–511 (1972)
  13. A.I. Zhmakin “Physical aspects of cryobiology51 231–252 (2008)
  14. R.A. Andrievski “Metallic nano/microglasses: new approaches in nanostructured materials science56 261–268 (2013)
  15. E.F. Sheka, N.A. Popova, V.A. Popova “Physics and chemistry of graphene. Emergentness, magnetism, mechanophysics and mechanochemistry61 645–691 (2018)
  16. A.A. Bukharaev, A.K. Zvezdin et alStraintronics: a new trend in micro- and nanoelectronics and material science61 1175–1212 (2018)
  17. A.V. Eletskii, I.M. Iskandarova et alGraphene: fabrication methods and thermophysical properties54 227–258 (2011)
  18. A.V. Eletskii “Carbon nanotube-based electron field emitters53 863–892 (2010)
  19. Yu.E. Lozovik, A.M. Popov “Formation and growth of carbon nanostructures: fullerenes, nanoparticles, nanotubes and cones40 717–737 (1997)
  20. A.F. Volkov, Sh.M. Kogan “Physical phenomena in semiconductors with negative differential conductivity11 881–903 (1969)

The list is formed automatically.

© 1918–2021 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions