Reviews of topical problems

Structure and properties of particulate-filled polymer nanocomposites

Kabardino-Balkarian State University, ul. Chernyshevskogo 173, Nalchik, 360004, Russian Federation

Some properties of particulate-filled polymer nanocomposites including structural features are reviewed. Novel effects found in these materials, such as nanoadhesion, reinforcement mechanisms, etc., are discussed. A structural analysis is performed using a fractal analysis procedure and the cluster model of the structure of a polymer in an amorphous state. The application prospects of these materials are examined in comparison with other polymer nanocomposites.

Fulltext is available at IOP
Keywords: polymer, nanocomposite, disperse nanoparticles, structure, aggregation, interfacial adhesion, nanoadhesion, fractal analysis, percolation, reinforcement degree, yielding, failure, microhardness
PACS: 61.43.Hv, 61.46.Df,, 62.23.Pq (all)
DOI: 10.3367/UFNe.0185.201501c.0035
Citation: Kozlov G V "Structure and properties of particulate-filled polymer nanocomposites" Phys. Usp. 58 33–60 (2015)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 21st, April 2014, revised: 16th, June 2014, 24th, June 2014

Оригинал: Козлов Г В «Структура и свойства дисперсно-наполненных полимерных нанокомпозитов» УФН 185 35–64 (2015); DOI: 10.3367/UFNr.0185.201501c.0035

References (170) Cited by (23) Similar articles (20) ↓

  1. G.V. Kozlov, V.U. Novikov “A cluster model for the polymer amorphous state44 681–724 (2001)
  2. B.M. Smirnov “Fractal clusters29 481–505 (1986)
  3. A.V. Eletskii, A.A. Knizhnik et alElectrical characteristics of carbon nanotube doped composites58 209–251 (2015)
  4. R.A. Andrievski, A.M. Glezer “Strength of nanostructures52 315 (2009)
  5. A.I. Olemskoi, A.Ya. Flat “Application of fractals in condensed-matter physics36 (12) 1087–1128 (1993)
  6. L.M. Zelenyi, A.V. Milovanov “Fractal topology and strange kinetics: from percolation theory to problems in cosmic electrodynamics47 749–788 (2004)
  7. V.V. Zosimov, L.M. Lyamshev “Fractals in wave processes38 347–384 (1995)
  8. A.A. Askadskii, T.A. Matseevich “Latest developments of models and calculation schemes for the quantitative analysis of the physical properties of polymers63 162–191 (2020)
  9. G.A. Malygin “Strength and plasticity of nanocrystalline materials and nanosized crystals54 1091–1116 (2011)
  10. A.V. Eletskii “Mechanical properties of carbon nanostructures and related materials50 225–261 (2007)
  11. B.M. Smirnov “Metal nanostructures: from clusters to nanocatalysis and sensors60 1236–1267 (2017)
  12. A.E. Galashev, O.R. Rakhmanova “Mechanical and thermal stability of graphene and graphene-based materials57 970–989 (2014)
  13. A.N. Lachinov, N.V. Vorob’eva “Electronics of thin wideband polymer layers49 1223–1238 (2006)
  14. E.P. Emets, A.E. Novoselova, P.P. Poluektov “In situ determination of the fractal dimensions of aerosol particles37 881–887 (1994)
  15. A.I. Olemskoi, I.A. Sklyar “Evolution of the defect structure of a solid during plastic deformation35 (6) 455–480 (1992)
  16. L.A. Chernozatonskii, A.A. Artyukh “Quasi-two-dimensional transition metal dichalcogenides: structure, synthesis, properties and applications61 2–28 (2018)
  17. G.N. Makarov “Experimental methods for determining the melting temperature and the heat of melting of clusters and nanoparticles53 179–198 (2010)
  18. E.F. Mikhailov, S.S. Vlasenko “The generation of fractal structures in gaseous phase38 253–271 (1995)
  19. B.M. Smirnov “Processes involving clusters and small particles in a buffer gas54 691–721 (2011)
  20. G.N. Makarov “Kinetic methods for measuring the temperature of clusters and nanoparticles in molecular beams54 351–370 (2011)

The list is formed automatically.

© 1918–2021 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions