Issues

 / 

2013

 / 

January

  

Methodological notes


Critical phenomena far from equilibrium


Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences, ul. akad. Osipyana 8, Chernogolovka, Moscow Region, 142432, Russian Federation

Stationary regimes of active systems — those in which dissipation is compensated by pumping — are considered. Approaching the bifurcation point of such a regime leads to an increase in susceptibility, with soft modes making the dominant contribution. Weak noise, which is inherent to any real system, increases. Sufficiently close to bifurcation, the amplitude of random pulsations is comparable to the average value of the fluctuating quantity, as in the case of developed turbulence. The spectrum of critical pulsations is independent of the original noise. Numerical simulation of the neighborhood of a bifurcation point is considered unreliable because of the poor reproducibility of results. Due to the high susceptibility, calculation roundings result in ’chaotic’ jumps of the solution in response to a smooth change in the parameters. It is therefore necessary in the simulation process to introduce a small random function of time, white noise. The solutions of the Langevin equations obtained in this way should be processed statistically. Their properties (except for the intensity of pulsations) are independent of the noise induced. Examples of the statistical description of bifurcations are given.

Fulltext pdf (731 KB)
Fulltext is also available at DOI: 10.3367/UFNe.0183.201301f.0103
PACS: 02.70.−c, 05.45.−a, 64.60.−i (all)
DOI: 10.3367/UFNe.0183.201301f.0103
URL: https://ufn.ru/en/articles/2013/1/f/
000317578800005
2-s2.0-84876526964
2013PhyU...56...93R
Citation: Rumanov E N "Critical phenomena far from equilibrium" Phys. Usp. 56 93–102 (2013)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 24th, June 2011, revised: 22nd, December 2011, 16th, January 2012

Оригинал: Руманов Э Н «Критические явления вдали от равновесия» УФН 183 103–112 (2013); DOI: 10.3367/UFNr.0183.201301f.0103

References (37) Cited by (6) Similar articles (20) ↓

  1. A.V. Borisov, A.O. Kazakov, S.P. Kuznetsov “Nonlinear dynamics of the rattleback: a nonholonomic modelPhys. Usp. 57 453–460 (2014)
  2. A.N. Pavlov, V.S. Anishchenko “Multifractal analysis of complex signalsPhys. Usp. 50 819–834 (2007)
  3. B.Ya. Shmerlin, M.V. Kalashnik “Rayleigh convective instability in the presence of phase transitions of water vapor. The formation of large-scale eddies and cloud structuresPhys. Usp. 56 473–485 (2013)
  4. Yu.E. Kuzovlev “Why nature needs 1/f-noisePhys. Usp. 58 719–729 (2015)
  5. A.A. Abrashkin, E.N. Pelinovsky “Gerstner waves and their generalizations in hydrodynamics and geophysicsPhys. Usp. 65 453–467 (2022)
  6. G.S. Golitsyn “A N Kolmogorov's 1934 paper is the basis for explaining the statistics of natural phenomena of the macrocosmPhys. Usp. 67 80–90 (2024)
  7. V.V. Brazhkin “Why does statistical mechanics 'work' in condensed matter?Phys. Usp. 64 1049–1057 (2021)
  8. S.N. Gordienko “Irreversibility and the probabilistic treatment of the dynamics of classical particlesPhys. Usp. 42 573–590 (1999)
  9. O.V. Rudenko “Nonlinear dynamics of quadratically cubic systemsPhys. Usp. 56 683–690 (2013)
  10. E.P. Zemskov “Turing patterns and Newell—Whitehead—Segel amplitude equationPhys. Usp. 57 1035–1037 (2014)
  11. A.N. Herega, N.G. Drik, A.P. Ugol’nikov “Hybrid ramified Sierpinski carpet: percolation transition, critical exponents, and force fieldPhys. Usp. 55 519–521 (2012)
  12. A. Loskutov “Dynamical chaos: systems of classical mechanicsPhys. Usp. 50 939–964 (2007)
  13. A.V. Borisov, I.S. Mamaev “Strange attractors in rattleback dynamicsPhys. Usp. 46 393–403 (2003)
  14. P.S. Landa, Ya.B. Duboshinskii “Self-oscillatory systems with high-frequency energy sourcesSov. Phys. Usp. 32 723–731 (1989)
  15. A.M. Gaifullin, V.V. Zhvick “Laminar submerged jets of incompressible fluid at large Reynolds numbersPhys. Usp. 66 1142–1153 (2023)
  16. Yu.L. Klimontovich “What are stochastic filtering and stochastic resonance?Phys. Usp. 42 37–44 (1999)
  17. V.L. Pokrovsky “Landau and modern physicsPhys. Usp. 52 1169–1176 (2009)
  18. V.I. Klyatskin “Statistical topography and Lyapunov exponents in stochastic dynamical systemsPhys. Usp. 51 395–407 (2008)
  19. A.V. Guglielmi “Foreshocks and aftershocks of strong earthquakes in the light of catastrophe theoryPhys. Usp. 58 384–397 (2015)
  20. A.S. Tarnovskii “A new representation of quantum mechanicsSov. Phys. Usp. 33 (10) 862–864 (1990)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions