Issues

 / 

2013

 / 

January

  

Methodological notes


Critical phenomena far from equilibrium


Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences, ul. akad. Osipyana 8, Chernogolovka, Moscow Region, 142432, Russian Federation

Stationary regimes of active systems — those in which dissipation is compensated by pumping — are considered. Approaching the bifurcation point of such a regime leads to an increase in susceptibility, with soft modes making the dominant contribution. Weak noise, which is inherent to any real system, increases. Sufficiently close to bifurcation, the amplitude of random pulsations is comparable to the average value of the fluctuating quantity, as in the case of developed turbulence. The spectrum of critical pulsations is independent of the original noise. Numerical simulation of the neighborhood of a bifurcation point is considered unreliable because of the poor reproducibility of results. Due to the high susceptibility, calculation roundings result in ’chaotic’ jumps of the solution in response to a smooth change in the parameters. It is therefore necessary in the simulation process to introduce a small random function of time, white noise. The solutions of the Langevin equations obtained in this way should be processed statistically. Their properties (except for the intensity of pulsations) are independent of the noise induced. Examples of the statistical description of bifurcations are given.

Fulltext is available at IOP
PACS: 02.70.−c, 05.45.−a, 64.60.−i (all)
DOI: 10.3367/UFNe.0183.201301f.0103
URL: https://ufn.ru/en/articles/2013/1/f/
Citation: Rumanov E N "Critical phenomena far from equilibrium" Phys. Usp. 56 93–102 (2013)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 24th, June 2011, revised: 22nd, December 2011, 16th, January 2012

Оригинал: Руманов Э Н «Критические явления вдали от равновесия» УФН 183 103–112 (2013); DOI: 10.3367/UFNr.0183.201301f.0103

References (37) ↓ Cited by (5) Similar articles (20)

  1. Landau L D, Lifshits E M Statisticheskaya Fizika Vol. 1 (M.: Fizmatlit, 1995); Landau L D, Lifshitz E M Statistical Physics Vol. 1 (Oxford: Pergamon Press, 1980)
  2. Ornstein L S, Zernike F Proc. Acad. Sci. Amsterdam 12 793 (1914)
  3. Weissman M B Rev. Mod. Phys. 60 537 (1988)
  4. Langevin P C.R. Acad. Sci. 146 530 (1908); Lanzheven P Izbrannye Trudy (M.: Izd-vo AN SSSR, 1960) p. 338
  5. Lorenz E N J. Atmos. Sci. 20 130 (1963)
  6. Poincaré H Sur Les Propriétés Des Fonctions Définies Par Les équations Aux Différences Partielles (Paris: Gauthier-Villars, 1879); Puankare A Izbrannye Trudy T. 1 Novye Metody Nebesnoi Mekhaniki (M.: Nauka, 1971)
  7. Arnol’d V I Usp. Fiz. Nauk 141 569 (1983); Arnol’d V I Sov. Phys. Usp. 26 1025 (1983)
  8. Arnol’d V I Teoriya Katastrof 5-e izd. (M.: URSS, 2007); Arnold V I Catastrophe Theory 3rd ed. (Berlin: Springer-Verlag, 1992)
  9. Whitney H Ann. Math. 62 374 (1955)
  10. Loskutov A Yu Usp. Fiz. Nauk 180 1305 (2010); Loskutov A Phys. Usp. 53 1257 (2010)
  11. Zaslavskii G M, Sagdeev R Z Vvedenie v Nelineinuyu Fiziku. Ot Mayatnika do Turbulentnosti i Khaosa (M.: Nauka, 1988); Sagdeev R Z, Usikov D A, Zaslavsky G M Nonlinear Physics. From The Pendulum To Turbulence And Chaos (Chur: Harwood Acad. Publ., 1988)
  12. Binney J J et al. The Theory Of Critical Phenomena. An Introduction To The Renormalization Group (Oxford: Clarendon Press, 1998)
  13. Ivleva T P et al. Chem. Eng. J. 168 1 (2011)
  14. Frank-Kamenetskii D A ZhFKh 13 738 (1939); Frank-Kamenetskii D A Acta Physicochim. USSR 10 365 (1939)
  15. Zel’dovich Ya B Zh. Tekh. Fiz. 11 493 (1941)
  16. Rumanov E N Dokl. Ross. Akad. Nauk 408 325 (2006); Rumanov É N Dokl. Phys. 51 238 (2006)
  17. Van der Pol B Radio Rev. 1 701 (1920)
  18. Merzhanov A G, Rumanov E N Usp. Fiz. Nauk 151 553 (1987); Merzhanov A G, Rumanov É N Sov. Phys. Usp. 30 293 (1987)
  19. Vaganova N I, Rumanov E N Dokl. Ross. Akad. Nauk 440 463 (2011); Vaganova N I, Rumanov E N Dokl. Phys. 56 507 (2011)
  20. Ginzburg V L Fiz. Tverd. Tela 2 2031 (1960); Ginzburg V L Sov. Phys. Solid State 2 1824 (1961)
  21. Vaganova N I, Rumanov E N Zh. Eksp. Teor. Fiz. 135 395 (2009); Vaganova N I, Rumanov É N JETP 108 349 (2009)
  22. Kramers H A Physica 7 284 (1940)
  23. Chan H B, Stambaugh C Phys. Rev. Lett. 99 060601 (2007)
  24. Kravtsov Yu A, Surovyatkina E D Phys. Lett. A 319 348 (2003)
  25. Frank-Kamenetskii D A, Sal’nikov I E ZhFKh 17 79 (1943)
  26. Aris R, Amundson N R Chem. Eng. Sci. 7 121 (1958)
  27. Vaganov D A, Samoilenko N G, Abramov V G Chem. Eng. Sci. 33 1131 (1978)
  28. Pikovsky A, Rosenblum M, Kurths J Synchronization. A Universal Concept In Nonlinear Sciences (Cambridge: Cambridge Univ. Press, 2001); Pikovskii A, Rozenblyum M, Kurts Yu Sinkhronizatsiya. Fundamental’noe Nelineinoe Yavlenie (M.: Tekhnosfera, 2003)
  29. Keldysh L V, Tikhodeev S G Zh. Eksp. Teor. Fiz. 91 78 (1986); Keldysh L V, Tikhodeev S G Sov. Phys. JETP 64 45 (1986)
  30. Zel’dovich Ya B Zh. Eksp. Teor. Fiz. 11 159 (1941)
  31. Dovzhenko A Yu, Maklakov S V, Rumanov I E, Rumanov E N Zh. Eksp. Teor. Fiz. 122 1125 (2002); Dovzhenko A Yu, Maklakov S V, Rumanov I E, Rumanov E N JETP 95 973 (2002)
  32. Feigenbaum M J J. Stat. Phys. 19 25 (1978)
  33. Dovzhenko A Yu, Rumanov E N Zh. Eksp. Teor. Fiz. 125 406 (2004); Dovzhenko A Yu, Rumanov É N JETP 98 359 (2004)
  34. Dovzhenko A Yu, Rumanov E N Zh. Eksp. Teor. Fiz. 131 567 (2007); Dovzhenko A Yu, Rumanov É N JETP 104 508 (2007)
  35. Dovzhenko A Yu, Dovzhenko M, Mashkinov L B, Rumanov E N Dokl. Ross. Akad. Nauk 388 181 (2003); Dovzhenko A Yu, Dovzhenko M, Mashkinov L B, Rumanov É N Dokl. Phys. 48 13 (2003)
  36. Rumanov E N, Vaganova N I Priroda (10) 23 (2011)
  37. Wang W-X et al. Phys. Rev. Lett. 106 154101 (2011)

© 1918–2021 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions