Methodological notes

Turing patterns and Newell—Whitehead—Segel amplitude equation

A.A. Dorodnicyn Computing Centre, Russian Academy of Sciences, ul. Vavilova 40, Moscow, 119991, Russian Federation

Two-dimensional (2D) reaction—diffusion systems with linear and nonlinear diffusion terms are examined for their behavior when a Turing instability arises and stationary spatial patterns form. It is shown that a 2D nonlinear analysis for striped patterns leads to the Newell—Whitehead—Segel amplitude equation in which the contribution from spatial derivatives depends only on the linearized diffusion term of the original model. In the absence of this contribution, i.e., for the normal forms, standard methods are used to calculate the coefficients of the equation.

Fulltext pdf (412 KB)
Fulltext is also available at DOI: 10.3367/UFNe.0184.201410j.1149
PACS: 05.45.−a, 47.54.−r, 82.40.Bj, 82.40.Ck (all)
DOI: 10.3367/UFNe.0184.201410j.1149
Citation: Zemskov E P "Turing patterns and Newell—Whitehead—Segel amplitude equation" Phys. Usp. 57 1035–1037 (2014)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 25th, December 2013, revised: 11th, February 2014, 11th, February 2014

Оригинал: Земсков Е П «Тьюринговы структуры и амплитудное уравнение Ньюэлла—Уайтхеда—Сегела» УФН 184 1149–1151 (2014); DOI: 10.3367/UFNr.0184.201410j.1149

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions