Reviews of topical problems

Phase transitions in various kinds of clusters

 a,  b
a Department of Chemistry, University of Chicago, 5735 South Ellis Ave., Chicago, Illinois, 60637, USA
b Joint Institute for High Temperatures, Russian Academy of Sciences, ul. Izhorskaya 13/19, Moscow, 127412, Russian Federation

This discussion examines cluster phase transitions and properties related to those phase transitions. Interpreted in terms of their potential energy surfaces, phase transitions in clusters of dielectric and metal atoms differ. Properties of aggregate states of dielectric clusters vary weakly as functions of temperature, and phase coexistence takes place in a range of conditions around the traditional melting point, where the solid and liquid phases have equal chemical potentials. On contrary, the configurational state of a solid metal cluster may well vary as it is heated, and the phase transition results, at least in part, from electronic coupling, as well as from changes in atomic configuration.

Fulltext is available at IOP
PACS: 36.40.Ei, 61.46.−w, 64.70.Hz (all)
DOI: 10.3367/UFNe.0179.200902b.0147
Citation: Berry R S, Smirnov B M "Phase transitions in various kinds of clusters" Phys. Usp. 52 137–164 (2009)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Берри Р С, Смирнов Б М «Фазовые переходы в кластерах различных типов» УФН 179 147–177 (2009); DOI: 10.3367/UFNr.0179.200902b.0147

References (231) Cited by (55) Similar articles (20) ↓

  1. R.S. Berry, B.M. Smirnov “Modeling of configurational transitions in atomic systems56 973–998 (2013)
  2. R.S. Berry, B.M. Smirnov “Phase transitions and adjacent phenomena in simple atomic systems48 345–388 (2005)
  3. G.N. Makarov “Experimental methods for determining the melting temperature and the heat of melting of clusters and nanoparticles53 179–198 (2010)
  4. B.M. Smirnov “Metal nanostructures: from clusters to nanocatalysis and sensors60 1236–1267 (2017)
  5. G.N. Makarov “Kinetic methods for measuring the temperature of clusters and nanoparticles in molecular beams54 351–370 (2011)
  6. B.M. Smirnov “Melting of clusters with pair interaction of atoms37 1079–1096 (1994)
  7. G.N. Makarov “Cluster temperature. Methods for its measurement and stabilization51 319–353 (2008)
  8. B.M. Smirnov “Processes involving clusters and small particles in a buffer gas54 691–721 (2011)
  9. B.M. Smirnov “Scaling method in atomic and molecular physics44 1229–1253 (2001)
  10. B.M. Smirnov “Processes in expanding and condensing gases37 621–657 (1994)
  11. B.M. Smirnov “Clusters with close packing and filled shells36 (10) 933–955 (1993)
  12. G.N. Makarov “Laser IR fragmentation of molecular clusters: the role of channels for energy input and relaxation, influence of surroundings, dynamics of fragmentation60 227–258 (2017)
  13. V.P. Krainov, B.M. Smirnov, M.B. Smirnov “Femtosecond excitation of cluster beams50 907–931 (2007)
  14. G.V. Shpatakovskaya “Semiclassical model of the structure of matter55 429–464 (2012)
  15. B.M. Smirnov “Generation of cluster beams46 589–628 (2003)
  16. V.Z. Kresin, Yu.N. Ovchinnikov “‘Giant’ strengthening of superconducting pairing in metallic nanoclusters: large enhancement of Tc and potential for room-temperature superconductivity51 427–435 (2008)
  17. A.V. Eletskii “Mechanical properties of carbon nanostructures and related materials50 225–261 (2007)
  18. A.V. Eletskii, B.M. Smirnov “Fullerenes and carbon structures38 935–964 (1995)
  19. G.N. Makarov “Laser applications in nanotechnology: nanofabrication using laser ablation and laser nanolithography56 643–682 (2013)
  20. B.M. Smirnov “Processes in plasma and gases involving clusters40 1117–1147 (1997)

The list is formed automatically.

© 1918–2020 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions