Issues

 / 

2002

 / 

August

  

Reviews of topical problems


The phase of an oscillator in quantum theory. What is it ’in reality’?


Lomonosov Moscow State University, Department of Physics, Vorobevy gory, Moscow, 119992, Russian Federation

An analysis of the current theory of the quantum oscillator phase is presented. Predictions using existing approaches to the phase problem differ not only quantitatively but also qualitatively. The question in the title has not yet been given a generally accepted answer. However, it is logical to argue that all the theoretically predicted properties of the phase are physically meaningful if appropriate measurements are possible. Current phase measurement methods either involve the simultaneous (approximate) measurement of the amplitude and the phase or rely on the simultaneous measurement of quadrature amplitudes.

Text can be downloaded in Russian. English translation is available on IOP Science.
PACS: 03.65.−w, 42.50.−p, 42.50.Dv (all)
DOI: 10.1070/PU2002v045n08ABEH001219
URL: https://ufn.ru/en/articles/2002/8/c/
Citation: Vorontsov Yu I "The phase of an oscillator in quantum theory. What is it 'in reality'?" Phys. Usp. 45 847–868 (2002)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Воронцов Ю И «Фаза осциллятора в квантовой теории. Что это такое „на самом деле“?» УФН 172 907–929 (2002); DOI: 10.3367/UFNr.0172.200208c.0907

References (82) Cited by (6) Similar articles (20) ↓

  1. V.B. Braginskii, Yu.I. Vorontsov “Quantum-mechanical limitations in macroscopic experiments and modern experimental technique18 644–650 (1975)
  2. M.B. Menskii “Concept of consciousness in the context of quantum mechanics48 389–409 (2005)
  3. M.B. Menskii “Dissipation and decoherence in quantum systems46 1163–1182 (2003)
  4. I.M. Suslov “Development of a (4-ε)-dimensional theory for the density of states of a disordered system near the Anderson transition41 441–467 (1998)
  5. A.A. Grib “Bell’s inequalities and experimental verification of quantum correlations at macroscopic distances27 284–293 (1984)
  6. N.B. Delone, V.P. Krainov “Atomic stabilisation in a laser field38 1247–1268 (1995)
  7. I.Sh. Averbukh, N.F. Perel’man “The dynamics of wave packets of highly-excited states of atoms and molecules34 (7) 572–591 (1991)
  8. S.I. Vinitskii, V.L. Derbov et alTopological phases in quantum mechanics and polarization optics33 (6) 403–428 (1990)
  9. L.I. Men’shikov “Superradiance and related phenomena42 107 (1999)
  10. V.I. Klyatskin, D. Gurarie “Coherent phenomena in stochastic dynamical systems42 165 (1999)
  11. M.L. Ter-Mikhaelyan “Simple atomic systems in resonant laser fields40 1195–1238 (1997)
  12. D.N. Klyshko “The nonclassical light39 573–596 (1996)
  13. D.N. Klyshko “Quantum optics: quantum, classical, and metaphysical aspects37 1097–1122 (1994)
  14. D.N. Klyshko “Berry geometric phase in oscillatory processes36 (11) 1005–1019 (1993)
  15. O.V. Misochko “Nonclassical states of lattice excitations: squeezed and entangled phonons56 868–882 (2013)
  16. D.F. Smirnov, A.S. Troshin “New phenomena in quantum optics: photon antibunching, sub-Poisson photon statistics, and squeezed states30 851–874 (1987)
  17. N.G. Basov “Quantum electronics at the P. N. Lebedev Physics Institute of the Academy of Sciences of the USSR (FIAN) [Text of an address presented March 21, 1985 at the International Conference on Lasers and Electrooptics (CLEO ’85) Baltimore, USA, dedicated to the 25th anniversary of quantum electronics]29 179–185 (1986)
  18. V.I. Balykin “Plasmon nanolaser: current state and prospects61 846–870 (2018)
  19. F. Laloë, M. Leduc et alOptical polarization of helium-3 nuclei28 941–955 (1985)
  20. I.Yu. Kobzarev, L.B. Okun “On the photon mass11 338–341 (1968)

The list is formed automatically.

© 1918–2019 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions